
H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 1 of 48

31/03/2017
Version 1.0

Due date of deliverable: 31/03/2017
Actual submission date: 31/03/2017

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

C3ISP
Collaborative and Confidential Information Sharing and Analysis for Cyber

Protection

Requirements for C3ISP Architecture

WP7 – C3ISP platform: Requirements / Architecture /
Implementation and integration

D7.1

Responsible partner: HPE
Editor: Mirko Manea

E-mail address: mirko.manea at hpe.com

The C3ISP Project is supported by funding under the Horizon 2020
Framework Program of the European Commission DS 2015-1, GA #700294

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 2 of 48

Authors: C. Gambardella, M. Manea, M. Belloni (HPE),

T.H. Nguyen, V. Herbert (CEA), M. Shackleton
(BT), G. Costantino, A. Saracino (CNR)

Approved by: List of reviewers Stefano Tranquillini,
(CHINO), Francesco Di Cerbo (SAP)

Revision History

Version Date Name Partner Sections Affected / Comments

0.1 10-Jan-2017 M. Manea HPE Initial ToC
0.2 03-Mar-2017 M. Manea

C. Gambardella
HPE Initial draft version

0.3 04-Mar-2017 T.H. Nguyen, V.
Herbert

CEA Contribution to 2.1.2, 2.2.1 and 2.2.3 sections

0.4 05-Mar-2017 A. Sajjad UNIKENT Contribution to 2.2
0.5 06-Mar-2017 M. Shackleton BT Contribution to section 2
0.6 07-Mar-2017 G. Costantino

A. Saracino
CNR Contribution to 2.1.1, 2.2.2, 3.1.1 and 3.2.1 sections

0.7 15-Mar-2017 M. Manea
C. Gambardella
M. Belloni

HPE Ready for internal review

0.8 28-Mar-2017 S. Tranquillini
F. Di Cerbo

CHINO
SAP

Internal Review by CHINO and SAP

1.0 31-Mar-2017 C. Gambardella
M. Manea

HPE Comments from internal review have been addressed

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 3 of 48

Executive Summary
The aim of deliverable 7.1 (D7.1) is to define the set of requirements for the C3ISP framework
driven by the four pilots' scenario needs.
The deliverable provides an overview of how the C3ISP framework will work and analyses the
functional requirements, declined in data sharing and data analytics requirements, and non-
functional requirements, as security, the operational needs, the performance and the system
usability.
D7.1 aims to collect the common requirements that will be considered in the core architecture
design and implementation of the framework in order to propose a C3ISP reference architecture
(first edition at M12), followed by a C3ISP reference implementation (first version at M24).
Furthermore, the deliverable discusses the requirements for the development and test bed
environments that will host the C3ISP reference implementation which will be used by the
pilots. In particular, it evaluates the partners’ needs for developing the framework, like the setup
of a continuous integration engine that will be used to test and deploy the C3ISP software
artefacts. Further, it proposes procedures and means to foster the creation a high quality and
secure system, like tools for discovering security issues, to enable standard code style guidelines
and to support testing, in order to supply the pilots with a common and robust platform that will
advance the project prototyping activities.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 4 of 48

Table of contents
Executive Summary .. 3	
1.	 Introduction ... 5	

1.1.	 Overview .. 5	
1.2.	 C3ISP Framework .. 5	
1.3.	 Requirements Naming Convention .. 7	
1.4.	 Deliverable Structure .. 7	
1.5.	 Definitions and Abbreviations ... 7	

2.	 Framework Requirements ... 10	
2.1.	 Functional Requirements .. 10	

2.1.1.	 Data Sharing Requirements .. 10	
2.1.2.	 Data Analytics Requirements ... 13	
2.1.3.	 Data Manipulation Operations .. 17	

2.2.	 Non-Functional Requirements ... 17	
2.2.1.	 Security Requirements .. 18	
2.2.2.	 Operational Requirements .. 22	
2.2.3.	 Performance Requirements ... 26	
2.2.4.	 Usability Requirements ... 27	

3.	 Requirements for Development and Test Bed Environment .. 28	
3.1.	 Development Environment Requirements ... 28	

3.1.1.	 Development Environment Infrastructure Setup .. 28	
3.1.2.	 Development Tools ... 28	
3.1.3.	 Quality and Assurance Strategy .. 32	

3.2.	 Test Bed Requirements .. 40	
3.2.1.	 Test Bed Environment Infrastructure Setup ... 41	
3.2.2.	 ISP Pilot .. 41	
3.2.3.	 CERT Pilot .. 43	
3.2.4.	 Enterprise Pilot .. 43	
3.2.5.	 SME Pilot .. 44	
3.2.6.	 Other Test Bed Requirements ... 45	

4.	 Conclusions and Next Steps .. 46	
5.	 References ... 47	

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 5 of 48

1. Introduction
The successful delivery of the C3ISP framework requires to carefully design and maintain a
sound architecture throughout the project that is able to cope with different user requirements
coming from the four pilots (ISP, CERT, ENT and SME Pilots1) proposed by the consortium.
This document is the first milestone in this effort. In particular, based on the functional and
non-functional (security, operational, performance and usability) requirements (NFRs) of the
different business use cases, we define a common set of design requirements (at M6) to drive
the definition of a coherent, generic and extensible architecture. The resulting C3ISP reference
architecture (due at M12) will include the common requirements from the pilots while at the
same time will decouple those that are pilots-specific instantiations (which will be implemented
at pilot-level) from the core architecture.
This section introduces the C3ISP overall framework by describing a high-level overview of its
objectives, what we mean by C3ISP framework and the strategy we used for requirements
elicitation.

1.1. Overview
The C3ISP project wants to address the need of different stakeholders (called prosumers, i.e.
producer and consumer at the same time) by developing a collaborative and confidential
information sharing, analysis and protection framework for cyber security management.
The core C3ISP idea is that only by enabling the setup of a prosumers’ federation for cyber
security related data exchange it will be possible to improve the overall security posture of a
participant. In particular, this federation develops through different enablers that interoperate
between them:

• A data sharing infrastructure, to support the data sharing among the prosumers (called
Information Sharing Infrastructure – ISI);

• A data analytics infrastructure, to enable the analysis on the shared data and the
visualization of the analytics services results (called Information Analytics
Infrastructure – IAI).

In this document we describe the C3ISP requirements that will be used to design the platform
architecture for data sharing and analytics, considering both functional and non-functional
requirements. In particular, special attention is given to security requirements (e.g.
confidentiality of data sharing), operational requirements (e.g. extensibility and
interoperability), performance (e.g. due to the planned usage of computational intensive
homomorphic encryption mechanisms) and usability (e.g. of the tools that will present the
analytics results).
These requirements will support the achievement of the C3ISP goals by allowing the
consortium to design and then implement the C3ISP framework described next, as the project
develops through its timeline.

1.2. C3ISP Framework
One of the main outcome of the project will be the C3ISP framework. This framework is the
implementation of the C3ISP reference architecture, whose requirements are described in this
document. The C3ISP reference architecture is the set of designed subsystems, components,
and modules, as well as their interaction within the boundaries of the overall system and with

1 Refer to D6.1 and specific pilot’s deliverables: D2.1, D3.1, D4.1 and D5.1

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 6 of 48

the external systems it needs to interact with, but that are not part of the architecture (e.g. a data
feed provider, or an authentication system).
In fact the C3ISP framework helps the pilot business cases, in particular the prosumers (i.e. the
system actors), to share cyber-security related data in a way that, on one hand, is both
confidential and privacy-preserving, but on the other, thanks to the established collaborative
federation, makes use of security analytics services that help fighting (i.e. discover and react)
against cyber-security threats.
This document defines what kind of cyber-security data the framework handles (i.e. the
resources), by considering the information the pilots deliver (e.g. security logs) and the security
and privacy constraints under which the data has to be used, especially considering the open
yet controlled nature of a data sharing federation.
It is worth saying that the generation, collection and submission of the prosumer’s data is a
pilot-specific process that is outside of the C3ISP framework, but capabilities to handle the
submission will be provided. While the cyber-security data is one of the inputs to the
framework, another important input is the data sharing policies, agreed within the prosumers’
federation to regulate their exchange. We plan to encode these policies in multi-lateral data
sharing agreements (DSAs) to express the security and privacy requirements for the cyber-
security data sharing. A DSA also encodes rules regarding the analytics services that can be run
on the shared data and defines constraints about data manipulation operations (DMOs)
performed on the data either before the computation, or after the computation on the resulting
output, in particular anonymisation or homomorphic encryption operations which shall be used
to find a balance between privacy requirements of the prosumer and accuracy on the analytics
result. The DSA can also contain sharing policies on the analytics services output, thus
controlling the dissemination of the generated insight much the same way as if it were input
data.
The idea of the prosumers federation is that only by combining data from different entities or
organisations it is possible to discover security threats or attacks that would go otherwise
unnoticed. For example, Advanced Persistent Threats [24] is a class of attack that might go
unnoticed on a single prosumer data, but might be revealed as a coordinated attack on a bigger
data set from the federation.
For the analytics services, the deployment of the C3ISP framework will provide a (Big) Data
Lake reference deployment, to accommodate the different pilots’ requirement that might or not
have it, according to their needs; for example small organizations might use the Data Lake
provided by the framework, instead others bigger may prefer to leverage on their own. This is
a component external to the framework that is however necessary to make the system useful.
In particular, we aim at using a Data Lake based on standard technologies (e.g. Apache Hadoop)
to allow already existent analytical tools to operate on the data sets with minimal to no changes
(in particular the Enterprise Pilot has specific requirements about that): to address this
requirement, still allowing a controlled data sharing, we are thinking about defining a
virtual/sanitised Data Lake to be used by third-party out-of-the-box analytical applications,
probably with some limitations on the rules we can setup in the DSAs in these cases.
Also the C3ISP framework will allow the definition of advanced Visual Analytics services that
will render the data under the constraints of the DSA. The service will enable users with
(security) domain knowledge to perform data analytics via interactive data exploration and
visualisation. An artificial intelligence layer will allow structured and non-structured data to be
analysed in order to discover patterns and to generate new levels of insight and knowledge for
existing data. Users will be able to interactively filter the data, based on temporal, spatial, or
logical clusters, in order to explore and drill down into the data to find patterns, anomalies, or

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 7 of 48

other items of interest. The Visual Analytics capability will be combined with C3ISP
preservation and transformation components, thereby integrating various data sources such as
from the homomorphic encryption module, the managed security services and other entities
such as CERT or external analytics tools.

1.3. Requirements Naming Convention
This document reports each C3ISP framework requirement indexed with an identifier to make
it easy to trace its fulfilment in the next phases of the project, as well as with a priority that
follows the MoSCoW [1] scale. In fact, the architecture will be designed to address the
requirements by considering the different priorities assigned. Further, each requirement is also
tagged, where possible, with the identifier(s) of pilot’s requirement it originates from (as from
D6.1), such in a way that the whole requirements chain can be rebuilt when we will discuss the
architecture in the next D7.1.
The requirements naming convention follows this format:

C3ISP-[ReqClass]-[Id]
Where [ReqClass] = Fun (Functional, further split in DS=Data Sharing and DA=Data
Analytics, due to their importance), Sec (Security), Ope (Operational), Per (Performance), Usa
(Usability), Dev (Development environment), Tst (Test Bed environment).
E.g.:

• C3ISP-Fun-DS-001 for C3ISP Functional requirement no. 001 for Data Sharing;

• C3ISP-Sec-001 for C3ISP Non-Functional requirement no. 001 for Security.

In case subsections are present for each class of requirement, we adjust the numbering. E.g.
Information Security RequirementsàC3ISP-Sec-001; Regulatory RequirementsàC3ISP-Sec-
101, because both are part of the Security Requirement class and so we can accommodate new
requirements during the on-going work of requirement elicitation and refinement.
The requirements naming convention also allows us to trace the requirements across different
deliverables should this be necessary.

1.4. Deliverable Structure
The document is structured as follows:

• After this introduction, Chapter 2 describes the requirements for the C3ISP framework,
by considering both functional and non-functional ones;

• Chapter 3 illustrates the requirements for the C3ISP development and test bed
environment that will be created starting from M6;

• We conclude this deliverable with Chapter 4 that describes the activities and the steps
for the next period.

1.5. Definitions and Abbreviations
Term Meaning

AES Advanced Encryption Standard

C&C Command and Control

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 8 of 48

C3ISP Collaborative and Confidential Information Sharing and Analysis for
Cyber Protection

CybOX Cyber Observable eXpression

CI Continuous Integration

CPE Common Platform Enumeration

CSP Cloud Service Provider

CTI Cyber Threat Information

CVE Common Vulnerability and Exposure

CWE Common Weakness Enumeration

DAST Dynamic Application Security Testing

DDoS Distributed Denial of Service

DMO Data Manipulation Operations

DSA Data Sharing Agreement

FHE Full Homomorphic Encryption

GDPR General Data Protection Regulation (EU 2016/679), http://eur-
lex.europa.eu/eli/reg/2016/679/oj

IAI Information Sharing Infrastructure

IDE Integrated Development Environment

IDS Intrusion Detection System

IP Internet Protocol

ISI Information Analytics Infrastructure

LTS Long-Term Support

LOWMC Low Multiplicative Complexity (a family of block ciphers)

MITRE The MITRE Corporation, https://www.mitre.org/

NFR Non Functional Requirement

NVD National Vulnerability Database

OASIS Organization for the Advancement of Structured Information Standards

OWASP Open Web Application Security Project

OpenC2 Open Command and Control

MoSCoW Must have, Should have, Could have, and Won’t have but would like

Multiplicative
depth

Multiplicative depth is the maximum number of multiplicative gates
between an input and an output of the circuit

PRINCE 64-bit block cipher with a 128-bit key optimized for low latency in
hardware

Prosumer An entity which is both a producer and a consumer of information, in
particular of Cyber Threat Information

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 9 of 48

REST Representational state transfer, a type of web services

RFI Remote File Inclusion attack

SaaS Software as a Service

SQLi SQL injection attack

STIX Structured Threat Information eXpression

TAXII Trusted Automated eXchange of Indicator Information

TTP Techniques, Tactics and Procedures

VCG VisualCodeGrepper

VM Virtual Machine

WAVSEP Web Application Vulnerability Scanner Evaluation Project

XSS Cross-Site Scripting attack

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 10 of 48

2. Framework Requirements
This section describes the C3ISP framework requirements elicited from the four pilots. They
are split between functional and non-functional ones. Since C3ISP is a security platform, it is
obvious that the NFRs are highly important and to some extent they represent not only
properties of the system, but also important functionalities it has to provide, so there is an
overlap between the two requirements set. For this reason, we strived to keep on the first class
what is strictly functional and move to the non-functional the security features of the system.
For example, the concept of homomorphic encryption has both functional and non-functional
impacts, and even if we introduce it in the security requirements section (NFR), some constrains
are also present in the data analytics functional requirements section.
Each subsection includes the objective of the requirements set it deals with and provides a table
with the requirements list that follows the format described in 1.3.

2.1. Functional Requirements
We split the functional requirements in two main areas related to the core C3ISP functionalities:
data sharing and data analytics. For data sharing we mean the exchange of security-related
information provided by the C3ISP prosumers that participate to the federation setup by the
Data Sharing Agreements. This includes also the capabilities to manage the DSA lifecycle (e.g.
editing, termination, etc.). With data analytics we intend tools and techniques that will make
use of the prosumers’ shared data to infer knowledge useful to identify and possibly mitigate
cyber-attacks.

2.1.1. Data Sharing Requirements
In a data sharing scenario, it is of outmost importance to correctly identify what are the
resources into play. From each specific Pilot use case, C3ISP must pinpoint what kind of data
to be shared and protected and with what level of granularity (e.g. a record in a database or a
file).
Broadly speaking, C3ISP aims at ensuring the security and privacy of any kind of cybersecurity-
related data shared by prosumers. Such kind of information could take the form of data files,
multimedia streams, database entries and textual logs. However, this raw information can and
shall be encoded in a standard structured format, which enables an easier and organized
representation of the information in the C3ISP framework. In C3ISP, any piece of data is related
and bound to a specific DSA which specifies the security requirements for that particular data
piece.
We outline the following resource specifications:

• As anticipated, C3ISP aims at protecting virtually any kind of information,
independently from the format and the specific content. Most of information handled by
the C3ISP framework falls in the category of CTI (Cyber Threat Information [3]2), still
any piece of data which can directly or indirectly help in describing a vulnerability,
attack or countermeasure, is considered as an asset for analysis.

• Protection of shared information can be ensured by use of standard cryptography
techniques, for secure data storage, sanitization techniques, such as anonymization and
generalization to preserve privacy, and homomorphic encryption when it is a

2 (Cyber) “Threat information is any information related to a threat that might help an organization protect itself
against a threat or detect the activities of an actor”

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 11 of 48

requirement to maintain data secrecy also for the information analysis infrastructure.
The specific security requirements for a piece of data are described in the DSA, together
with the specification of the prosumers which might receive the data itself, or can
receive the analysis results performed on the data piece.

According to the use cases defined in D6.1, resources to be shared and protected by C3ISP
framework are of different types. The following table summarises the resource types involved
in the specific pilot use cases:

Resource Type Pilot Use Case Id

Security Log File contains security
evaluation (in Common Event Format [4])

ISP-US-1

Network and systems, security appliances,
software monitoring

ENT-US-1

Security event data ENT-US-2

Security Threats, attacks or vulnerabilities CERT-US-1, CERT-US-6

In a generalized approach, we can conclude that all the resources involved are CTI3 with
different peculiarities depending on the pilots and the contexts in which they operate.
To enable the management of different kind of data on C3ISP, we evaluated a common format
for describing CTI. The STIX [2] (Structured Threat Information eXpression) standard,
sponsored by the OASIS Cyber Threat Intelligence Technical Committee, has been considered
suitable for describing the identified resource types, since the formats supported by the standard
cover the information involved in all the pilots scenarios. STIX mission is to “enable
organizations to share CTI with one another in a consistent and machine readable manner,
allowing security communities to better understand what computer-based attacks they are most
likely to see and to anticipate and/or respond to those attacks faster and more effectively”. More
on STIX architecture is reported in 2.2.2.2.
Also referring to D6.1, we have extrapolated and consolidated a set of requirements concerning
data sharing, how pilots expect to define security policies that regulate the data access and
usage, the need to have evidence of the effective application of the defined policies and a set of
collateral data sharing requirements (pre-processing of data before sharing operations, post
sharing notifications, etc.).
The requirements are summarized in the following table, in which is indicated the
correspondent pilot's use case from which it was derived. The MoSCoW notation is used to
prioritise them, according to the pilot’s classification.
Table 1 – Data Sharing Requirements

ID Goal Priority Requirement

C3ISP-Fun-DS-
001

ISP-US-2
CERT-US-2
ENT-UC-2
SME-US-4

MUST C3ISP allows defining Data Sharing
Agreements between parties that want to
exchange CTI data

3 As detailed in the “Classification of Requirements” in D6.1

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 12 of 48

C3ISP-Fun-DS-
002

ISP-US-1
CERT-US-2
ENT-US-2
SME-US-4
SME-US-11

MUST C3ISP allows the sharing of files
(including log data, threat intelligence
data, analysis reports)

C3ISP-Fun-DS-
003

ISP-UC-5
CERT-US-5
ENT-US-2
SME-US-2

MUST C3ISP grants prosumers the control over
the sharing of data (i.e. prosumers have
both tools and functionalities to specify
“constraints” that regulate the data
sharing process)

C3ISP-Fun-DS-
004

ISP-US-5
SME-US-2

MUST C3ISP allows controlling the process of
data sharing at file level

C3ISP-Fun-DS-
005

ISP-US-5
ENT-US-1
CERT-US-2
SME-US-2

MUST C3ISP allows defining policies (i.e. a set
of rules) that regulate the data sharing
process

C3ISP-Fun-DS-
006

ISP-US-5
ENT-US-1
SME-US-4
CERT-US-5

MUST C3ISP policies allow access control to
the shared data (i.e. define conditions to
be verified before accessing the data)

C3ISP-Fun-DS-
007

ISP-US-5 ISP-
US-2 CERT-
US-3 ENT-
US-2 SME-
US-4

MUST C3ISP policies allow usage control of
the shared data (i.e. define conditions to
be continuously verify while the data is
being consumed and after it has been
accessed)

C3ISP-Fun-DS-
008

ENT-US-1
SME-US-4

SHOULD C3ISP policies allow defining rules that
can evaluate contextual information (i.e.
information from the environment/use
case)

C3ISP-Fun-DS-
009

SME-US-10
SME-US-11

MUST C3ISP allows defining notifications (i.e.
email, SNMP, etc.) that are triggered
once the analytic service result is
available (i.e. be able to encode this
requirement in a policy rule). A
notification mechanism could be email.

C3ISP-Fun-DS-
010

ENT-US-2
CERT-US-2

MUST C3ISP provides evidences (e.g. audit
logs) of the compliance to the sharing
policies enforcement

C3ISP-Fun-DS-
011

ENT-US-2
SME-US-5

SHOULD C3ISP policies allow writing “pre-
processing rules” on the data to be
shared, which are data manipulation
operations performed before the data is
shared with the other party(ies). These
operations should include: (i) sanitisation
operations (see 2.1.3) for minimising

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 13 of 48

sensitive data exchange; (ii) encryption
mechanisms (see 2.2.1).

C3ISP-Fun-DS-
012

ENT-US-2
SME-US-7

COULD C3ISP allows specifying policy rules to
control the risk of data sharing (i.e. if a
metrics is over a certain threshold, data
can’t be shared or additional sanitisation
measures must be applied before
sharing)

C3ISP-Fun-DS-
013

SME-US-2 COULD C3ISP could use an open and/or standard
policy description language for data
sharing (DSA/XACML)

C3ISP-Fun-DS-
014

CERT-US-5 COULD C3ISP allows defining multi-lateral Data
Sharing Agreements, i.e. DSA between
multiple prosumers (two or more)

2.1.2. Data Analytics Requirements
The C3ISP framework will provide data analytics as a service to support the pilots in detecting
ongoing attacks and deriving intelligence to prevent against potential (future) attacks. As more
and more relevant information is shared between the prosumers, the analytics service gains
higher importance as attacks can be detected more accurately and predicted earlier. Some
examples of such analytics services are briefly described as follows:

• Domain hijacking: Domain hijacking is an impersonation of a domain owner with the
aim of stealing a domain name and related services. The C3ISP service analyses the
communication between the attacker and a registrar in order to reveal traffic patterns
that can be used to identify and prevent further attacks (at different registrar);

• Distributed Denial of Service (DDoS): Multiple websites that are targeted together by
DDoS attacks are likely registered and hosted by different registrars. The C3ISP service
analyses the DDoS traffic and provides intelligence to help registrars better differentiate
legitimate Web traffic from requests that are part of the DDoS attack;

• Malware spreading: Malware commonly spreads as email attachments. Relying on log
analysis, the C3ISP service creates profiles of the malicious emails (e.g. sender, email
body) and their attachments (e.g. document name) in order to support mail servers block
them and prevent further spreading;

• Malicious port scanning: Port scanning is used by attackers to discover open ports and
vulnerable services to exploit at a target machine. The C3ISP service detects new
malicious sources from the information shared in C3ISP Data Lake (e.g. blacklisted IPs)
and sends notification alerts to interested stakeholders/prosumers;

• Periodic beaconing: A beacon is traffic leaving the network at regular intervals. It can
be used to communicate with a Command and Control (C&C) server. The C3ISP service
analyses the traffic patterns and identifies the potential C&C server hosts that are
commonly shared in the information provided by prosumers and sends notification
alerts;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 14 of 48

• Drive-by-Download: It is a technique to inject malware when a visitor navigates to a
malicious website. The C3ISP service analyses the outbound web traffic data shared by
different prosumers and identifies websites (i.e. URLs) that have potentially caused
malware infection;

• Stealthy attack pattern: A stealthy attack normally remains undetected by
conventional security systems such as IDS (Intrusion Detection System) or Firewall. It
is using stealthy penetration and observation techniques to discover the victim’s
vulnerabilities and determine the locations of sensitive data on victim’s network.
Nevertheless the perpetrator may use the same methods on different targets and follow
a specific traffic pattern. The C3ISP service analyses the aggregated prosumers’ shared
data to detect such stealthy attack patterns and notifies the affected prosumers.

In general the C3ISP framework defines two types of data operation that can be performed on
information shared between the prosumers: (1) data manipulation operations (DMOs), and
(2) analytics operations. Data manipulation operations are mainly used to pre-process the
information before or after its usage in order to make it usable for further processing, or to
comply with the associated sharing policy. Examples are data anonymization, homomorphic
encryption, data conversion, etc. Analytics operations are used to analyse the (aggregated) data
and extract intelligence related to security attacks, threats and vulnerabilities. Examples
includes the analytics services described at the beginning of this sections, which uses techniques
for anomaly detection, data correlation, data visualisation, etc.
The data analytics requirements presented in this section apply to both types of operation. We
also use the term privacy-preserving operation to describe such data manipulation operation
that specifically aims at removing or protecting sensitive information, e.g. homomorphic
encryption. Table 2 summarises the requirements derived from the correspondent pilot’s user
stories and use cases; they are prioritised using the MoSCoW notation. Main requirement is to
enable prosumers define DSA policies for controlling how and which analytics operations
should be allowed on their data. The pilots also set requirements on which capability the
operations should provide (e.g. threat classification), as well as how the analytics results should
be represented and communicated back to the prosumers.
Table 2 – Data Analytics Requirements

ID Goal Priority Requirement

C3ISP-Fun-DA-
001

ISP-US-2
ISP-US-5
CERT-US-3
ENT-US-1

MUST C3ISP allows defining policies (i.e. a set
of rules) for data analytics operations to
control what analysis can be performed
on the prosumer’s data

C3ISP-Fun-DA-
002

ENT-US-1
ENT-US-2

MUST C3ISP policies allows writing “post-
processing rules” on analytics operation
result, which are data manipulation
operations performed before returning it
to the prosumer(s). DMOs should
include data sanitisation and
(de)encryption (see also C3ISP-Fun-DS-
011 and 2.1.3)

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 15 of 48

C3ISP-Fun-DA-
003

ISP-US-1
ISP-US-2
ENT-US-4
SME-US-5
SME-US-6

MUST C3ISP provides a programming interface
for executing DMOs, such as privacy-
preserving operations on data (e.g. data
sanitisation or encryption)

C3ISP-Fun-DA-
004

SME-US-5 MUST C3ISP allows executing privacy-
preserving DMOs on all or part of the
data

C3ISP-Fun-DA-
005

ISP-US-2
CERT-US-3
ENT-US-1
ENT-US-3

MUST C3ISP provides a programming interface
for supporting the analysis on the data
stored in C3ISP data lake, in compliance
with the associated DSA policies

C3ISP-Fun-DA-
006

CERT-US-1
CERT-US-2
CERT-US-3
CERT-US-4
CERT-US-5
ENT-US-3
ENT-US-4
SME-US-9

MUST C3ISP provides a function to query data
and analytics operation results that are
stored in C3ISP data lake in compliance
with the DSA policies

C3ISP-Fun-DA-
007

ENT-US-4 MUST C3ISP supports standard query language
(e.g. SQL) for querying data and
analytics operation results from C3ISP
data lake

C3ISP-Fun-DA-
008

CERT-US-6
SME-US-9

MUST C3ISP provides a function for automatic
threat classification of analytics
operation results

C3ISP-Fun-DA-
009

CERT-US-6
SME-US-4

MUST C3ISP provides a function for automated
mapping of analytics operation results to
interested stakeholders/prosumers that
are specified in the DSA

C3ISP-Fun-DA-
010

ENT-US-1
SME-US-3
SME-US-4
SME-US-9

MUST C3ISP provides a function to convert
analytics operation results to
standardised and machine-readable
formats (e.g. STIX) in compliance with
the DSA

C3ISP-Fun-DA-
011

ENT-US-3
ENT-US-4

MUST C3ISP provides an interface to integrate
external analytics tools while preserving
the policy compliance (i.e. extract data
from C3ISP data lake and feed it into
analytics tool)

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 16 of 48

C3ISP-Fun-DA-
012

SME-US-4 MUST C3ISP provides near real-time
notifications of analytics operation
results (see also C3ISP-Fun-DS-009)

C3ISP-Fun-DA-
013

SME-US-9
SME-UC-4

SHOULD C3ISP provides a function to query
analytics operation results of specific
categories (e.g. malware analysis, attack
on cloud platform)

C3ISP-Fun-DA-
014

SME-US-9 SHOULD C3ISP supports different categories for
analytics operations results, i.e. threat
types, threat risks, threat origins, threat
costs, regulatory and compliance
concerns

C3ISP-Fun-DA-
015

SME-UC-4
SME-US-10

COULD C3ISP supports the provisioning of
analytics operation results in form of
actionable items (e.g. security patches,
recommended configurations, fixes,
etc.). See also the OpenC2 description in
2.2.2.

C3ISP-Fun-DA-
016

SME-UC-4 COULD C3ISP provides a dashboard showing
status and results of the analysis

C3ISP-Fun-DA-
017

SME-US-10 SHOULD C3ISP allows scheduling of the
provisioning of analytics operation
results (e.g. on demand, periodical, etc.)

C3ISP-Fun-DA-
018

SME-US-5
SME-US-6
SME-UC-3

MUST When using homomorphic encryption
(see 2.2.1.1), before data analytics
execution, data is represented as bits or
integers.

C3ISP-Fun-DA-
019

SME-US-5
SME-US-6
SME-UC-3

MUST When using homomorphic encryption
(see 2.2.1.1), data is of constant length
(in real world scenarios). If not, a
possible solution is to compute a hash
function (not necessarily a cryptographic
one) on data.

C3ISP-Fun-DA-
020

SME-US-5
SME-US-6
SME-UC-3

MUST When using homomorphic encryption
(see 2.2.1.1), analytics operands (cipher-
texts) are encrypted bits (most current
case) or encrypted integers with
considered homomorphic cryptosystems.

C3ISP-Fun-DA-
021

SME-US-5
SME-US-6
SME-UC-3

MUST When using homomorphic encryption
(see 2.2.1.1), analytics operations are
expressible in terms of two elementary
operations: (homomorphic) addition and
(homomorphic) multiplication with
considered homomorphic cryptosystems,

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 17 of 48

Homomorphic sum (resp. product) of
two cipher-texts is a cipher-text of the
sum (resp. the product) of two associated
plaintexts.

C3ISP-Fun-DA-
022

SME-US-5
SME-US-6
SME-UC-3

MUST When using homomorphic encryption
(see 2.2.1.1), analytics computation on
encrypted bits is represented as a
Boolean circuit with multiplicative
depth4 roughly 20 or 30.

C3ISP-Fun-DA-
023

SME-US-5
SME-US-6
SME-UC-3

SHOULD When using homomorphic encryption
(see 2.2.1.1), the number of
multiplicative gates should be minimized
to decrease latency of homomorphic
evaluation.

2.1.3. Data Manipulation Operations

In the context of the DMOs described for C3ISP-Fun-DS-011 and C3ISP-Fun-DA-002,
possible anonymization techniques that find application in the pilots’ use cases are:

• Suppression of identifiers (e.g. names);

• Generalization of values in certain finite domains (e.g. subnet masking);

• Randomization methods that anonymize individual values (and thereby one's
membership in the data set) in such a way that accurate aggregates for certain functions
(e.g. mean) can be produced when enough data is provided.

DMOs includes also homomorphic encryption described in 2.2.1.

2.2. Non-Functional Requirements
NFRs address the goal of building “quality” into the system. Being C3ISP a security platform,
this kind of requirements is particularly important. The requirements are split in:

• Security: in addition to IT security requirements, this class includes needs from the
regulatory space that the pilots have to obey;

• Operational: they deal with constraints or necessities under which the pilots have to
operate;

• Performance: since C3ISP uses analytical platform services, this class is important as
well, especially considering the advanced encryption techniques we are using that have
high memory and computation needs;

• Usability: the C3ISP framework services requirements for addressing effectiveness and
efficiency of use by the C3ISP users.

4 Multiplicative depth is the maximum number of multiplicative gates between an input and an output of the circuit.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 18 of 48

2.2.1. Security Requirements
The standard security requirements of confidentiality, integrity and availability (CIA-triad)
are at the core of C3ISP data-centric protection vision. In particular, in the context of C3ISP,
the shared data shall:

• Maintain confidentiality, the property of protecting the secrecy of data and disclose only
to authorised parties under the policies specified in their DSAs. Specifically, encryption
has been traditionally used for preserving confidentiality, and just lately homomorphic
encryption has started emerging as a novel approach for this goal;

• Integrity, the fact of being able to preserve the data such that it does not get altered
fraudulently (conversely, C3ISP-protected data gets altered based on the DMOs
regulated by the DSAs policies);

• Availability, the capability to have the data, including the C3ISP analytics results,
available when they are needed or requested (this is important since results could drive
the react phase to mitigate a discovered attack).

In addition to these traditional security requirements, also non-repudiation, authentication,
authorisation, and accountability are among the top C3ISP priorities because of the data
sharing. In particular:

• Non-repudiation: the fact that one party cannot deny of having submitted data to the
C3ISP federation, can help as a deterrent countermeasure to limit a malicious party to
submit bad data;

• Authentication and authorisation: both the data sharing and the consumption of analytics
results have to be protected by access control mechanisms and conditions. DSAs
regulate how access and usage control protect the cyber threat information;

• Accountability: especially to address compliance mandatory requirements or to help
internal investigations, assess the correctness of system processing, etc., C3ISP has to
be able to trace and identify the right entities or people that participate in the DSA-
regulated federation and be able to understand that the policies stated have been
correctly and effectively enforced.

The next section introduces homomorphic encryption.

2.2.1.1. Fully Homomorphic Encryption (FHE)
In this section, we provide an overview of what FHE is as well as of its benefits and limitations.
The FHE addresses data privacy issues and regulatory requirements; for this reason we consider
it as an innovative security requirement.
In a nutshell, Fully Homomorphic Encryption is a new kind of cryptographic techniques, which
on top of allowing the scrambling of data in order to protect their confidentiality, also provides
the necessary mathematical building blocks for the execution of general algorithms directly on
encrypted data (for example, we can make addition, multiplication, division for comparison
purpose, and subtraction). As such, FHE is a unique ground breaking software-only technology
allowing to enforce the confidentiality of data when they are manipulated by untrusted servers
without decryption and without disclosing any secret to those servers.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 19 of 48

The ability to compute directly over encrypted data results in the ability for a computer
(depicted below as Charlie) to do something useful with the data of an end user (depicted below
as Alice) using additional data from one or more providers (depicted below as Bob). In doing
so, both Alice’s and Bob’s data remain confidential with respect to Charlie which manipulates
them only in encrypted form and, thus, neither has access to these data in clear form nor is
provided with any decryption capability. In the setting below, any by-product of Charlie’s
calculations (be it intermediate or final calculation results) remains sealed under Alice’s
homomorphic cryptosystem who, as the owner of that cryptosystem secret key, is the only party
able to retrieve the intelligibility of Charlie’s outputs.

Figure 1: Alice’s (left) and Bob’s (right) data remain confidential with respect to Charlie (middle) data
manipulation operations.

This capability allows to imagine a number of settings where users can benefit from services
taking into account their privacy-critical data, still without effectively giving them away.
Among these are:

• Undisclosed cross-valorisation of data (and algorithms): where it becomes possible for
an algorithm to interact with some data with this interaction implying neither the
disclosure of the algorithm to the data owner, nor the disclosure of the data to the
algorithm owner.

• Intrinsic data protection on vulnerable platforms: where it becomes possible to store
sensitive data (e.g. medical or biometric data) on e.g. a computing platforms connected
to the Internet (hence intrinsically more vulnerable) while keeping an intrinsic
protection layer on their confidentiality.

• Privacy-preserving outsourcing: where it becomes possible to store data on an untrusted
server (with respect to confidentiality, i.e. in the honest-but-curious threat model [10])
while still preserving an ability to do more than just retrieving them.

Using FHE technology, we can clearly protect data and confidentiality with very high security
level. But there are a number of issue with respect to transmitting FHE-encrypted data, mainly:

• FHE-encryption is a computationally heavy operation;

• FHE-encrypted data are much larger than their associated plaintexts. As an example, let
us compare two encrypted IPv4 addresses (32 bits). First we encrypt them bitwise, that
is we encrypt 2*32 bits; the size of each cipher text is 82 KiB. Be conscious, this figure
depends on many parameters such as the employed cryptosystem, the desired security
level and the computations we want to do with cipher texts.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 20 of 48

However, FHE is quite powerful and allows to perform a “trick” known as trans-ciphering, by
means of which it is possible to switch from data encrypted with some cryptosystem (e.g. a
“classic” overhead-free symmetric cryptosystem) to the same data encrypted under FHE,
without this data to ever be in clear form. The following figure illustrates this principle
assuming that the initial cryptosystem is the AES:

Figure 2: Trans-ciphering AES to FHE

However, homomorphically executing an AES decryption still takes 18 mins with our best
implementation [11]. And this is intrinsic as the algorithm has a multiplicative depth of 40,
which is quite large. Hence, more homomorphically-friendly symmetric systems are required
and this is precisely on this issue that we have focused on the first year of the project.
In particular, we have studied how stream ciphers could help. Indeed, when a block-cipher
usually is a relatively low degree function iterated a significant number of times (e.g. 10 times
for AES-128 or more to the notable exception of PRINCE [12] and the more recent LOWMC
[13]), a design which is intrinsically not FHE-friendly, stream ciphers (when not based on
block-ciphers) follow different design patterns, some of them “friendlier” for efficient FHE
execution.
So what we need is a stream cipher where keystream bits must be multiplicatively bounded.
This is the case if keystream bits are independent by chunks (which is good for parallelism and
batching). Also, when using a stream cipher, keystream bits can be homomorphically «mined»
independently of the data. Hence, trans-ciphering induces almost no latency (it is just a
homomorphic XOR) as long as keystream mining has been done in advance. So, we turned to
the basic pattern of using an IV-based (FHE-friendly) stream cipher in «counter mode».
Usually, in cryptography counter mode turns a block cipher into a stream cipher. In our context,
counter mode is used with stream ciphers during keystream generation (refer to [14], page 5 for
detailed information).
With that respect, we did an analysis [14] of all the finalists of the recent ESTREAM [15]
stream cipher design competition and found that the TRIVIUM [16] algorithm was a very good
candidate as a respected 80-bits key lightweight stream cipher. Still, in order to increase the
overall key-length to a larger 128-bits, we contributed to the design of a 128-bits key extension
of TRIVIUM, KREYVIUM, which also retains the FHE-friendliness.

2.2.1.2. Information Security Requirements
We outline below the requirements that are specific to maintain the security properties of the
data that C3ISP will manage.
Table 3 – Information Security Requirements

ID Goal Priority Requirement

C3ISP-Sec-001 ISP-NFR-05
SME-US-12

MUST There is mutual authentication carried
out between the C3ISP framework and

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 21 of 48

the Prosumers at the start of any
communication.

C3ISP-Sec-002 ISP-NFR-05
SME-NFR-4

MUST Confidentiality and Integrity of the Data
Sharing Agreement communications
between the Prosumers and C3ISP
Service is guaranteed.

C3ISP-Sec-003 ISP-NFR-05
SME-NFR-5

MUST The transfer of CTI from the Prosumers
to the C3ISP framework is secure (w.r.t.
confidentiality and integrity).

C3ISP-Sec-004 SME-NFR-6 COULD The integrity of the CTI data stored on
the C3ISP framework is maintained.

C3ISP-Sec-005 ISP-NFR-05
SME-NFR-7

MUST The transfer of analysis results from the
C3ISP framework to the Prosumers is
secure (w.r.t. confidentiality and
integrity).

C3ISP-Sec-006 SME-US-5
SME-US-6
SME-UC-3

SHOULD C3ISP Service is able to process
anonymised or homomorphically
encrypted CTI shared with it by the
Prosumers.

C3ISP-Sec-007 SME-US-5
SME-US-6
SME-UC-3

SHOULD Minimum security level is at least 80 bits
(security strength). See discussion on
FHE in section 2.2.1.1.

C3ISP-Sec-008 SME-US-5
SME-US-6
SME-UC-3

MUST Maximum security level is at most 128
bits (computational efficiency), for real
world scenarios. See discussion on FHE
in section 2.2.1.1.

C3ISP-Sec-009 SME-US-5
SME-US-6
SME-UC-3

MUST The homomorphic encryption uses
randomization methods (see section
2.1.3). It is required to have semantic
security. That is, it should be hard to
distinguish between the encryption of
any two messages, even if the public key
is known to the attacker and even if the
two messages are chosen by the attacker
(chosen plaintext attacks). (In return,
cipher-text size is greater than plaintext
size). See discussion on FHE in section
2.2.1.1.

2.2.1.3. Regulatory Requirements
This section specifies requirements due to compulsory law obligations or industrial standards,
as determined by the pilots’ needs. We chose to be specific, e.g. instead of specifying
generically a GDPR compliancy requirement, we tried to set more concrete requirements that
can be “easily” addressed during the project development.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 22 of 48

More specifically, according to the reference context, pilots need for a certain regulatory
compliance. In the CERT pilot the knowledge of regulation and policies on data privacy,
defined by law authorities or data providers are a prerequisite for the data collection and
manipulation (ref. CERT-UC-2). Also for the SME pilot, concerns about the regulatory
compliance are considered in the SME-UC-4, when the scenario about the filtering of relevant
information for the SME from the analysed shared CTI is described.
Moreover, in the ENT pilot, the threat intelligence feeds involved in the sharing can be
proprietary and/or subject to licensing restrictions. Constraints about confidentiality and data
usage referring to legal and ethical regulation need to be considered in the data sharing and
analysis (ENT-US-1). Further, customers specify policies governing about how its data may be
used; they need to have evidence of the enforcement of the policies and of the degree of data
confidentiality and integrity.
Table 4 – Regulatory Requirements

ID Goal Priority Requirement

C3ISP-Sec-101 SME-US-1 MUST The Prosumers are given the details of
their data’s lifecycle at the C3ISP
framework.
(GDPR Requirement)

C3ISP-Sec-102 SME-US-1 MUST The Prosumers are able to reject or
cancel the terms and conditions of their
data sharing agreement with the C3ISP
framework at any time.
(GDPR Requirement)

C3ISP-Sec-103 SME-US-11 MUST The Prosumers are informed of any
breach or compromise of the C3ISP
framework within 72 hours, so that they
can take remedial actions.
(GDPR Requirement)

C3ISP-Sec-104 ENT-US-1 MUST The Prosumers are able to define data
access and usage policies

C3ISP-Sec-105 CERT-UC-2 MUST Data sharing and data analysis is
compliant with the law obligations
and/or the industrial standard

C3ISP-Sec-106 ENT-US-1 MUST For accountability purposes, C3ISP has
an auditing subsystem that traces the
enforcement results of the policies

2.2.2. Operational Requirements

2.2.2.1. Cloud Computing and Deployment Models Requirements
The cloud-based deployment model is nowadays prominent because of it technical practicality
and of it business relevance (e.g. shifting costs from CapEx to OpEx, [5]). Also Gartner reports
that by 2020 “a Corporate "No-Cloud" Policy Will Be as Rare as a "No-Internet" Policy Is
Today” [25]. Hence, it is evident that C3ISP has to evaluate how it can fit into the Cloud
paradigm. Further, pilots call for a cloud-based deployment model: SMEs gain benefits from a

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 23 of 48

C3ISP provided as a service (SaaS), since the Managed Security Services are provided through
the cloud (ref. SME-UC-1), where C3ISP will integrate with. The Enterprise pilot5 describes a
Managed Security Service that is multi-tenant (ref. ENT-US-4), asking for C3ISP to be able to
fit into this picture as well.
Table 5 – Cloud Computing and Deployment Models Requirements

ID Goal Priority Requirement

C3ISP-Ope-001 SME-US-1,
SME-UC-1,
ENT-UC-2

MUST C3ISP is available as a service,
following the SaaS model

C3ISP-Ope-002 SME-US-1,
SME-UC-1,
ENT-US-4,
ENT-UC-2

MUST C3ISP is multi-tenant, where several
tenants (i.e. pilots) can use the
framework at the same time w/o troubles

C3ISP-Ope-003 SME-US-7 SHOULD C3ISP is independent of the CSP where
it runs (e.g. public or private)

C3ISP-Ope-004 ENT-US-2 MUST DSA policies allow to specify different
DMOs depending on the trust level the
prosumer has on the CSP or on other
prosumers in the federation

2.2.2.2. Extensibility and Interoperability Requirements
In this section we analyse requirements to enable the integration with the C3ISP framework and
also to allow future improvements of the framework itself, in order to realize a system
extensible and interoperable.
The following table summarizes this requirements category.
Table 6 – Extensibility and Interoperability Requirements

ID Goal Priority Requirement

C3ISP-Ope-101 ISP-US-2,
ISP-US-4,
CERT-UC-1,
ENT-US-2,
SME-UC-3

MUST C3ISP provides an open interface for
application integration (e.g. a C3ISP
API)

C3ISP-Ope-102 CERT-US-2,
CERT-NFR-
2, SME-US-3,
SME-US-4

SHOULD C3ISP uses a standard to represent data
in order to simplify the integration with
the framework

C3ISP-Ope-103 ISP-US-1
CERT-US-2
ENT-US-4
SME-US-3

SHOULD C3ISP should be able to represent
different kind of cyber observables (see
below)

5 Refer to D4.1

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 24 of 48

C3ISP-Ope-104 ISP-US-1
CERT-US-2
ENT-US-4
SME-US-3

MUST C3ISP provides information related to
the cyber observables (see below) which
characterize it

In order to satisfy these requirements we evaluated the adoption of a standard format for
organized representation of cyber threat information called STIX and proposed by MITRE.
STIX is an XML or JSON-based language that has been recently standardized by OASIS, which
allows to represent and contextualize any kind of CTI. In particular, it is possible to use STIX
to represent an observed behaviour, relate it to a known security attack, represent the previous
knowledge on methodology and target of the attack, eventual information on the attacker and
the known countermeasures, according to the schema shown in Figure 3.

Figure 3: STIX language architecture

One of the main functional blocks of the STIX language are the Cyber Observables (upper
right in Figure 3), which are used to represent any observed event or information, such as the
amount of network traffic, a list of IP addresses, the configuration of a firewall, etc. Cyber
Observables represent thus any decontextualized information, which could be related to a threat
or attack. For representing different kind of cyber observables, the MITRE itself has proposed
the CybOX standard [7], which easily integrate with STIX, to represent the observed events and
raw information in a standard format (e.g. a network connection, an IP address, a file instance,
etc.). The other blocks of STIX are:

• The Indicator, which contextualize the cyber observables relating them to incidents and
describing their importance;

• The Incident, which describes in which critical situation the cyber observable and the
associated indicator have been observed and could then be related;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 25 of 48

• The Exploit Target, which describes the specific vulnerability of the system that has
been/could have been exploited;

• The TTP (Techniques, Tactics and Procedures) which specifies how an attack is
performed or how a vulnerability is exploited;

• The Threat Actor, which relates the attack to a specific malicious entity;

• The Campaign, which collocates the specific attack in a larger set of similar or related
attacks;

• The Course of Action, which as a counterpart of the TTP, specifies how
countermeasures should be taken to avoid, tackle or recover from a specific attack.

TAXII [8] is a transport mechanism that has been defined to provide a protocol for sharing
STIX records among different entities, implementing different sharing models. It is designed to
integrate within existing data sharing agreements, including the possibility to specify access
control conditions. TAXII supports both push and pull messages, to cater for subscription based
notification paradigm and on-demand queries (based on standard protocols like HTTP or TLS
over HTTP).
TAXII provides three sharing models: (i) Hub and Spoke, where a central organisation (the
hub) coordinates the exchange between federated parties (the spokes, that can be considered
prosumers in the C3ISP jargon); (ii) Source/Subscriber, where there is a single data source (an
organisation) that share data to subscribers; (iii) Peer to Peer, where two or more parties
exchange data directly with one another.
Alongside, another language has been proposed to describe Course of Actions, to be taken in
order to tackle or mitigate noticed threats. This language is named OpenC2 [9] (Open
Command and Control) and its purpose is to define a lexicon language and semantics at a level
of abstraction that will enable the coordination and execution of command and control of cyber
defence components between and within networks. OpenC2 commands are vendor neutral and
message fabric agnostic, thus can be incorporated in different architectures and environments.
OpenC2 was designed to have a concise set of commands and extensible in order to provide
context specific details. Conciseness ensures minimal overhead to meet possible latency and
overhead constraints while extensions enable greater utility and flexibility.
The specific implementation of the single commands will be application specific, hence
OpenC2 only provides the main instrument to express in a structured way the workflow of a
Course of Action. The actual definition of the various steps are left to the designer of the
enforcement mechanism. OpenC2 well integrates for structure, paradigm and functionalities
with both STIX and TAXII.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 26 of 48

Figure 4: In the picture6, the Course of Actions contain OpenC2 commands to DENY access at the Firewall
and DELETE the malware.

2.2.3. Performance Requirements
From our experience [17], the performance requirements come from the ones of each industrial
user-cases providers. Indeed, from each user-cases provider, in function of his need and his
algorithm or generic algorithm need, we will provide a corresponding algorithm allowing
working on data in HE format. The algorithm performance depends on his Boolean circuit – in
fact, each algorithm working with data in HE format can be represented by one Boolean circuit.
So optimizing this Boolean circuit, i.e., reducing the Boolean circuits’ multiplicative depth, will
provide a good performance for the application. Moreover, there is a huge amount of work
needed for by-hand optimization of non-straightforward Boolean circuits’ multiplicative depth.
As one can expect this will be the case for many applications.
Let us define the direct multiplicative depth of a node in a Boolean circuit as the length of the
longest path starting from circuit inputs to this node. Equivalently, the reverse multiplicative
depth is the length of the longest path from this node to circuit outputs. The nodes for which
these two values coincide are called critical nodes. The critical circuit contains all the critical
nodes of a Boolean circuit. It is straightforward to see that optimizing critical circuit paths
allows to minimize the overall multiplicative depth of a Boolean circuit. From this point of
view, CEA provides a runtime environment (see 3.2.6).
Table 7 – Performance Requirements

ID Goal Priority Requirement

C3ISP-Per-001 ENT-NFR-2 MUST C3ISP does not introduce significant
delay when enforcing policies for
sharing analytics operation results

C3ISP-Per-002 SME-US-5
SME-US-6
SME-UC-3

MUST With each pilot’s use case, C3ISP
defines an interval of tolerant response
delay, in order to obtain a compromise
resource availability for other requests

6 From: https://www.oasis-open.org/committees/download.php/59483/OpenC2.key.pdf

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 27 of 48

on FHE services (response delay
requirement). This requirement applies
only if FHE is used.

2.2.4. Usability Requirements
In this section specific requirements of usability are considered; usability means not only
effectiveness and efficiency but also easiness to be used and learned. We considered usability
in the presentation aspects and also in the simplicity of processes and tools. The following table
summarises the usability requirements collected from the pilots and also implicitly needed for
the C3ISP framework.
Table 8 – Usability Requirements

ID Goal Priority Requirement

C3ISP-Usa-001 ENT-NFR-1 SHOULD C3ISP provides response information
about requests (analytics query) to the
C3ISP data lake (e.g. why the requested
data cannot be provided to prosumers)

C3ISP-Usa-002 SME-US-2 and
common to
pilots

MUST C3ISP provides a tool to guide and
support the end user in the definition of
DSA policies (authorisations,
prohibitions, obligations)

C3ISP-Usa-003 SME-US-8 and
common to
pilots

MUST C3ISP’s processes are seamless and
transparent in order to not interfere with
the core operations

C3ISP-Usa-004 Common to
pilots

MUST C3ISP’s representation of analytics
results is effective and efficient for the
end user.

C3ISP-Usa-005 SME-US-5
SME-US-6
SME-UC-3

MUST To use the FHE technology, the
decryption service (library) is installed or
integrated in client applications.

C3ISP-Usa-006 Common to
pilots

MUST C3ISP provides an intuitive graphical
user interface for exploring and
visualising the analytics results, e.g.
potential cyber-attacks, cyber
intelligence, anomalous behaviour.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 28 of 48

3. Requirements for Development and Test Bed Environment
This section describes the requirements for setting up tools, processes and activities for
delivering a testable system implementing the reference architecture of the C3ISP framework
to be used by the Pilots. To gather this information, we interviewed all the partners and came
out with a list of preferences or constraints that are reported below.
We foresee two distinct environments that will support this goal:

• Development Environment: provides tools to partners for coding the C3ISP
framework, like versioning, continuous integration, bug tracking, etc. The artefacts
created through this environment will feed the Test Bed where they will be integrated
and tested;

• Test Bed: provides an instantiation of the C3ISP reference architecture implementation.
The Pilots shall use the Test Bed for testing activities by integrating their specific tools
and services with the C3ISP reference architecture installed there.

3.1. Development Environment Requirements

3.1.1. Development Environment Infrastructure Setup

Figure 5: Development Environment

The Development Environment will be deployed as a Virtual Machine that contains the tools to
store and share the artefacts, for the bug tracking system, continuous integration, versioning
and so on. At month 6 of the project, we have not fixed yet the hardware and software
specification for this environment. However, based on prior experiences, we plan to set up at
VM with at least 8 cores, 8 GB of RAM and 200 GB of storage. The Operating System will be
Ubuntu 16.04 LTS7 and the VM will be deployed in the CNR data-elaboration centre, where it
will be reachable with a public IP to all the consortium’s partners.

3.1.2. Development Tools
With the aim of creating a computing environment that supports the development of the C3ISP
framework, by being available to all partners and to satisfy pilots’ constraints, we interviewed
the consortium members and presented an Agile-based style of working [21] to be able to reach
the relevant goals and milestones set for C3ISP within the expected deadlines but at the same
time without scarifying the overall quality of the software artefacts.

7 Ubuntu LTS (Long-Term Support) versions have five years support.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 29 of 48

The assessment resulted in the requirements summarised in the following table, which can be
considered common to all the pilots and stakeholders.
Table 9 – Development Environment Tools Requirements

ID Goal Priority Requirement

C3ISP-Dev-001 All artefacts
should be
stored in the
same
repository for
ease of
sharing	

MUST Have a Revision Control System for
storing the source code of the project

C3ISP-Dev-002 Speed up the
build process

MUST Automate the build

C3ISP-Dev-003 Run test suite
automatically

SHOULD Make the build self-testing

C3ISP-Dev-004 Speed up the
test process

SHOULD Have a centralized bugs tracking system

C3ISP-Dev-005 Deploy SHOULD Automate deployment

C3ISP-Dev-006 User free tools MUST Free or open source software

C3ISP-Dev-007 Commercially
friendliness
tools

SHOULD The license is commercially friendly (i.e.
BSD or Apache-like) and not copy-left
(i.e. GPL-like)

C3ISP-Dev-008 Java support MUST Support the Java programming language,
used for the C3ISP core framework (i.e.
DSA tools and enforcement)

C3ISP-Dev-009 C/C++ support MUST Support the C/C++ programming
language, mainly used for FHE
components

C3ISP-Dev-010 Python
support

MUST Support the Python programming
language, mainly used for scripting and
also to use some standard reference
implementation (e.g. TAXII)

In this section we concentrate on the tools that can assist the objective of setting up a continuous
integration service [22]. In particular, in the survey we carried out among the consortium, we
asked to raise preferences about the following classes of solutions:

• Version control system: it is the hearth of a disciplined software development process,
used to store the source code of the project along with all the required artefacts (libraries,
configuration files, etc.), with multiple parties (developers) that contribute concurrently,
merge their code, and are assisted in solving code conflicts (when two or more people
update the same piece of code);

• Build Automation system: it is in charge of automating the process of compiling the
source code into executable code. It typically handles software dependencies, i.e. can

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 30 of 48

automate the management (finding, retrieval, etc.) of the correct libraries required to
build the software component;

• Artefact repository: it is a system that keeps binary software components that are on
one hand needed to support the Build Automation systems for dependencies, on the
other used to store the software artefacts generated during the build step;

• Continuous Integration software: it is the orchestrator of the whole build process that
integrates with all the other solutions and enables automation of the cycle that includes
the fetching the code from the Revision Control system, compiling it through the Build
Automation, testing the generated software, store it on the Artefact repository, evaluate
the solution for quality and security issues, including the automatic deployment of the
binaries and configuration into the running environment;

• Bug Tracking system: it is a tool that supports the tracking of software defects for
different systems components and/or deployment environments, including enhancement
or change requests, issue prioritization and assignment, roadmaps, etc., by providing a
centralised dashboard of the project development requests;

• Unit Test system: it supports the automation of testing “units of source codes”
(methods, classes, modules, etc., depending on the programming language), by defining
“unit test cases” which are code fragments that verify the intended behaviour of the code
unit. Typically, Unit Test frameworks allow the developers to use mock-up services
(e.g. stubs) to verify the component without being impacted by other depending piece
of codes or systems;

The following table summarises the evaluated software components:

C3ISP - Development Software components

Version Control System Concurrent Version Systems (CVS),
http://savannah.nongnu.org/projects/cvs

Apache Subversion (SVN),
https://subversion.apache.org

GIT, https://git-scm.com

Build Automation System Apache Ant, http://ant.apache.org

Apache Maven, https://maven.apache.org

Gradle, https://gradle.org

Artefact repository Nexus Repository OSS,
https://www.sonatype.com/nexus-repository-
oss

Artifactory, https://www.jfrog.com/open-
source

Continuous Integration Software Hudson, http://hudson-ci.org

Jenkins, https://jenkins.io

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 31 of 48

Cruise Control,
http://cruisecontrol.sourceforge.net

Bug Tracking System MantisBT, https://www.mantisbt.org

Bugzilla, https://www.bugzilla.org

Trac, https://trac.edgewall.org

Unit Test System Junit, http://junit.org

TestNG, http://testng.org

Spock, http://spockframework.org

For evaluating tools, we took into account the criteria and requirements in Table 9 and tried to
find a balance in order to cover most (if not all) of them. The comparison is summarized in the
following table:
 C3ISP

-Dev-
001

C3ISP
-Dev-
002

C3ISP
-Dev-
003

C3ISP
-Dev-
004

C3ISP
-Dev-
005

C3ISP
-Dev-
006

C3ISP
-Dev-
007

C3ISP
-Dev-
008

C3ISP
-Dev-
009

C3ISP
-Dev-
010

CVS X X X X X

SVN X X X X X

GIT X X X X X

ANT X X X X X X X*

MAVEN X X X X X X*

Gradle X X X X X X X*

NEXUS X X X X X X

Artifactory X X X X X X

Hudson X X X X X X

Jenkins X X X X X X

Cruise Control X X X X X X

MantisBT X X

Bugzilla X X

Trac X X

Junit X X X X*

TestNG X X X

Spock X X X

*the support is enabled by specific library/module to be included

According to the evaluation and the feedback collected the selected tools are:
• GIT as the revision control system;

• Maven as build automation system for Java code; make and cmake for C/C++ code;

• Jenkins as Continuous Integration software;

• Nexus as artefact repository;

• Trac as bug tracking system;

• Junit as Java unit test system (possibly it can be used also for Python [23]).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 32 of 48

Since we do not plan to modify the code of the selected tools (so, the tools’ licenses do not have
strong impact), C3ISP-Dev-007 requirement was relaxed in the evaluation process, accepting
also GPL-like licensed tools.

3.1.3. Quality and Assurance Strategy
Mechanisms to evaluate the software quality will be available in the development environment
in order to provide tools to measure the software in terms of functionality, reliability, security,
performance efficiency and maintainability, according to ISO/IEC 25010:2011 standard8. We
investigated about several tools to be used for evaluating quality of the code. In particular, our
analysis involves free or open source tools for static and dynamic analysis of the code that can
be used to assess the quality of the code in terms of presence of design flaws or code bugs that
can be considered security issues or can represent vulnerabilities. We focused on tools
supporting Java, Python, C and C++ since they are the programming languages used for
implementing the pilots.
These tools should be integrated in a Continuous Integration system for versioning, build and
deploy of the code to meet high level of assurance software requirement, which is common to
all the pilots. For comparing the tools, we have also consulted the online community Black
Duck Open Hub9 that offers analytics for open source code and projects, such as licenses used
and project wellness (how many developers, when was last code commit, etc.).
We consider of outmost importance that security software is also secure and so we put great
attention on both software quality and assurance practices. For this reason, the following
paragraphs provide an analysis for each evaluated tool (split between static code analysers and
dynamic analysers) and from this selection we then choose a subset that better addresses the
development requirements provided by partners and pilots as reported in the following table:
Table 10 – Development Environment Quality & Assurance Requirements

ID Description Pilot
Requirement

ISO25010:2011
Recommendation

C3ISP-Dev-101 Support for Continuous
Integration

X

C3ISP-Dev-102 Open source or free software
(type of license)

X

C3ISP-Dev-103 Support for C/C++/Java/Python
programming languages

X

C3ISP-Dev-104 IDE integration (to be used in
development environment)

X

C3ISP-Dev-105 Stability of the code X

C3ISP-Dev-106 Absence of known vulnerabilities X

C3ISP-Dev-107 Healthy of the open source
community

 X

C3ISP-Dev-108 Compliance with standard X

C3ISP-Dev-109 Usability (i.e. analysis results) X

8 http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35733
9 https://www.openhub.net

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 33 of 48

C3ISP-Dev-110 Source code availability needed
for analysis

 X

C3ISP-Dev-111 Scan for vulnerabilities X

3.1.3.1. Static Analysis Tools Overview
In this section we offer a roundup of tools used for static analysis of the code, i.e. the practice
of analysing the source code of a system without having it running. In particular such tools are
dedicated to Python, C, C ++ and Java programming languages, according to the analysis
provided by the open software security community OWASP10 and by the National Institute of
Standard and Technologies (NIST)11.
CheckStyle
CheckStyle12 is a syntactical checking tool used to verify if the developed code is compliant
with standard good programming rules to foster maintainability and reuse. It is configurable to
write rules to support any code standard and it is able to check code in terms of style constraints
(naming conventions, comments, limit of number of parameter for functions, duplicated
sections, etc.). It can be useful to define levels of check according to the accountability needed
for a program. CheckStyle supports build automation tools (i.e. Maven, Ant, Jenkins/Hudson)
and Java programming language, including latest Java v1.8. It also integrates with many IDEs,
like Eclipse and NetBeans, and with continuous integration systems. CheckStyle is an open
source LGPL-licensed software. According to Black Duck Open Hub13, CheckStyle is a mature
project maintained by a very large community of developers; this is one of the largest open-
source teams in the world, and it is in the top 2% of all project teams on Open Hub. Finally, no
vulnerabilities are currently reported for this project.
FindBugs and FindSecBugs
FindBugs14 is a static analysis tool supporting Java, Groovy and Scala programming languages.
It operates at bytecode level; it means that the source code is not needed to perform the analysis.
For this reason, FindBugs is very useful to analyse third-parties libraries and external modules.
The analysis is based on the discovery of “bug patterns”, which are code instances that are
likely to be errors. FindBugs requires JRE (or JDK) 1.7.0 or later to run. However, programs
in any version of Java, from 1.0 to 1.8 can be analysed. The set of rules can be extended using
additional plug-ins. For example, to increase the security bugs analysis, FindBugs can be
extended with FindSecBugs15 plug-in, which is dedicated to the security audit. FindSecBugs
provides OWASP Top 10 and CWE coverage and it supports popular frameworks (i.e. Spring-
MVC, Struts, Tapestry). Both FindBugs and FindSecBugs are open source LGPL-licensed
software and they can be used in a continuous integration environment (using Jenkins, for
example), can be integrated within IDEs (Eclipse, NetBeans, IntelliJ, etc.) and support build
automation tools (Ant, Maven). FindBugs is born in 2003 and has registered recent activities

10 https://www.owasp.org/index.php/Source_Code_Analysis_Tools
11 https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
12 http://checkstyle.sourceforge.net/
13 https://www.openhub.net/p/checkstyle
14 http://findbugs.sourceforge.net/
15 https://find-sec-bugs.github.io/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 34 of 48

in terms of contribution of the developers; according to Black Duck Open Hub16, projects with
recent activities and a code base more than five years old are likely solving vital problems and
delivering consistent value, then it comes out reliable.
PMD
PMD17 is an analyser using a syntactic approach to discover potential flaws in the source code.
It supports several languages, including Java (also version 1.8), JavaScript and it is also able
to analyse C, C++, C# code. It leverages on the CPD (Copy-Paste-Detector), which finds
duplicated code in Java, C, C++, C#, PHP, Ruby, FORTRAN, and JavaScript. PMD is
integrated with many IDEs (Eclipse, and IntelliJ IDEA among the others) and it integrates with
build automation tools (i.e. Maven, Ant and Jenkins/Hudson). In particular, Jenkins provides
a dashboard to report graphically the evolving trends of the discovered bugs with specific views
(through the Jenkins’ DRY plug-in) for the Copy-Paste-Detector (CPD). PMD is an open source
BSD-like licensed software. About PMD18, Black Duck Open Hub reports a vital community,
born in 2002 but currently strongly active, which indicates a mature and relatively bug-free
code base.
VisualCodeGrepper (VCG)
VisualCodeGrepper19 scans C/C++, C#, VB, PHP, Java, and PL/SQL for security issues and
for comments that may indicate defective code. The tool tries to identify potential risks as buffer
overflows and signed/unsigned comparison in C code, violations of OWASP recommendations
in Java code, etc. The configuration files can be used to carry out additional checks for banned
functions or functions, which commonly cause security issues. The output of the analysis is
shown in a pie chart (for the entire codebase and for individual files) showing relative
proportions of code, whitespace, comments, “ToDo” style comments and bad code. The
software is a “desktop” application that means it cannot be integrated into a Continuous
Integration system automatically. VCG is GPL-licensed. Black Duck Open Hub does not
provide report for VCG.
Splint
Splint20 is a free tool for statically checking C programs for security vulnerabilities and
programming mistakes. Using annotation in the code, it is possible to increase the checks
providing additional information used at analysis time. Problems detected by Splint include
dereferencing a possibly null pointer, memory management errors, buffer overflow
vulnerabilities, dangerous macro implementations or invocations, violations of customized
naming conventions and so on. Splint is available as source code and binary executables for
several platform under GPL-3.0+ a licensed. Black Duck Open Hub21	reports no changes in
over a year on this project and no vulnerabilities are known for this software. Since comments
are very few in the source code, it puts Splint among the lowest one-third of all C projects on
Open Hub.

16 https://www.openhub.net/p/findbugs
17 http://pmd.sourceforge.net/
18 https://www.openhub.net/p/pmd
19 https://sourceforge.net/projects/visualcodegrepp
20 http://www.splint.org
21 https://www.openhub.net/p/splint

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 35 of 48

Cppcheck
Cppcheck22 is a free (GPLv3 license) static analysis tool for C/C++ code. The tool provides
checks for several potential risks (for example pointer to a variable that goes out of scope,
bounds, classes with missing constructors or unused private functions, exception safety,
memory leaks, invalid STL usage, overlapping data in sprintf, division by zero, null pointer
dereference, unused struct member, passing parameter by value, etc.) with the goal of no false
positives. The tool can be invoked by a command line and can be integrated in a Jenkins job
for implementing a Continuous Integration system. Black Duck Open Hub evaluates
Cppcheck23 a versatile tool since it is able to discover bugs that the C/C++ compiler does not
find and also it supports non-standard code such as various compiler extensions, inline assembly
code, etc. Nevertheless, since the number of lines of comment in Cppcheck project is very low
respect to the all C++ projects on Open Hub (11% of all source code lines are comments against
the 22% across all the C++ project) Black Duck Open Hub puts Cppcheck among the lowest
one-third of all C++ projects on Open Hub. The presence of comments indicates a very well
documented code source and a disciplined development team that are significant characteristics
for evaluating a project.
UNO
UNO24 is an acronym and stands for:

• Use of uninitialized variable,

• Nil-pointer references, and

• Out-of-bounds array indexing.

These are the three most common types of software defects on which the free tool for static C
code analysis in focused on. The idea of UNO is avoid producing a huge amount of results that
can probably contain false positive results and be more precise concentrating on the most
common issues. The tool also allows to define several user-defined properties to be used to
extend the checks used by the tool. UNO is available as a command line tool. Black Duck Open
Hub does not provide report for UNO.
Flawfinder
Flawfinder25 is lexical source code static analyser used to scan C and C++ code in order to
identify any flaw, sorted by risk level, in a Common Weakness Enumeration26 compatible
approach. The tool requires Python 2 to run; it provides a command line and requires the source
code availability. It is a very simple tool that does not even know about the data types of
function parameters, and it does not perform control flow or data flow analysis. It just makes a
comparison between the application code and its built-in database of well-known problems
(buffer-overflow risks, format string problems, race conditions, etc.). Flawfinder is released
under the GPL version 2 or later, and thus is open source and free software. Black Duck Open
Hub evaluates Flawfinder27 as a very useful tool for quickly finding and removing some security
problems before a program is widely released. It appears to be a very young project, since the

22 https://sourceforge.net/projects/cppcheck
23 https://www.openhub.net/p/cppcheck
24 http://spinroot.com/uno/
25 http://www.dwheeler.com/flawfinder
26 http://cwe.mitre.org
27 https://www.openhub.net/p/flawfinder

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 36 of 48

source code repository for Flawfinder has less than a year of continuous activity, however it is
known to be one of the very first security static tool (around 2001).
OWASP Dependency Check
OWASP Dependency Check28 is used to analyse any project dependencies with external module
or third-parties libraries which are publicly known to be vulnerable. It does not require source
code and it is in line with the OWASP Top 10 2013 (in particular A929 check). Java and .NET
are currently supported; other programming languages, like C and C++, are partially supported
(with autoconf and cmake build systems) and under experimentation. OWASP Dependency
Check is integrated in build automatic tools (Maven, Ant, Jenkins/Hudson), but it is not
integrated as IDE plug-in. This utility scans the dependencies used in the application getting
“evidences” from it and then uses these evidences to identify the Common Platform
Enumeration30 for each dependency. Once a CPE is identified, it gathers the associated
Common Vulnerability and Exposure (CVE) from the US NIST’s National Vulnerability
Database31 (NVD) in order to document the founded issue. OWASP Dependency Check is a
GPL-licensed software. Black Duck Open Hub evaluates OWASP Dependency Check Jenkins
Plugin32: it is considered a very stable project (no recent activities) and with the 45% of line of
comment, it is among the highest one-third of all Java projects on Open Hub.
Tox
tox33 is an automation tool providing packaging, testing and deployment of Python software.
It is available as test command line tool, but also it integrates with continuous integration
servers (like Jenkins). It provides the following features:	

• Checking that packages install correctly with different Python versions and interpreters;

• Configuring and running tests;

• Acting as a front-end to CI servers.

tox is a GPL-licensed software. According to Black Duck Open Hub34, tox has a mature, well
established codebase, it is well documented and developed by a large team.
PyChecker
PyChecker35 is a very simple static analysis tool for Python, which is able to discover bugs
similar to those that a compiler finds on languages such as C and C++. Some false positives can
occur because of the dynamic nature of the Python, according to its developers. It is available
as a command line tool and it seems to be a stable project. Lack of comments indicates that it
is not well documented. PyChecker is a BSD-licensed software.

28 https://www.owasp.org/index.php/OWASP_Dependency_Check
29 https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
30 http://nvd.nist.gov/cpe.cfm
31 http://nvd.nist.gov
32 https://www.openhub.net/p/dependency-check-plugin
33 https://tox.readthedocs.io/en/latest/
34 https://www.openhub.net/p/python-tox
35 http://pychecker.sourceforge.net/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 37 of 48

Pylint
Pylint36 is a highly configurable, customizable tool used for checking compliance to a coding
standard for Python. It provide a wide variety of feature like checking line-code's length,
checking if variable names are well-formed according to a coding standard, or checking if
declared interfaces are truly implemented, and much more. It can be used in a continuous
integration environment working on a custom configuration (i.e. Jenkins) and it is also
available for IDEs. Pylint is a GPL-licensed software. Black Duck Open Hub provides a quite
good review of the project, since it is considered mature and no vulnerabilities are known about
it even if the lacks of comments puts Pylint among the lowest one-third of all Python projects
on Open Hub.

3.1.3.2. Static Analysis Tools Evaluation
The following table summarises the tools evaluation by following the evaluation criteria and
requirements described in Table 10 – Development Environment Quality & Assurance
Requirements.
 C3ISP

-Dev-
101

C3ISP
-Dev-
102

C3ISP
-Dev-
103

C3ISP
-Dev-
104

C3ISP
-Dev-
105

C3ISP
-Dev-
106

C3ISP
-Dev-
107

C3ISP
-Dev-
108

C3ISP
-Dev-
109

C3ISP
-Dev-
110

C3ISP
-Dev-
111

CheckStyle X X
(LGP

L)

X
(Java)

X X X X X X X -

FindBugs /
FindSecBugs

X X
(LGP

L)

X
(Java)

X X X X - X - X

PMD X X
(BSD)

X
(Java;

C;
C++)

X X X X - X X X

VCG - X X
(Java;

C;
C++)

- - X - X - X -

Splint - X
(GPL-
3.0+)

X (C) X X X - - X X X

Cppchecker X X
(GPL-

3)

X
(C/C+

+)

X X X - - - X X

UNO - X X (C) X - X - - - X -

Flawfinder - X
(GPL-

2)

X
(C/C+

+)

X - X - X - X X

OWASP
Dependency
Check

X X
(GPL)

X
(Java;
C and
C++

partial
ly)

X X X X X X X X

tox X X
(GPL-
2.0+)

X
(Pytho

X X X X - X X -

36 https://www.pylint.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 38 of 48

n
only)

PyChecker - X
(BSD-

3-
Clause

)

X
(Pytho

n
only)

X X X X - X X -

Pylint X X
(GPL-
2.0+)

X
(Pytho

n
only)

X X X X - X X -

According to the evaluation criteria and the pilots’ requirements, we can conclude that the tools
which satisfy our needs are:

• CheckStyle, for syntactical checking Java code;

• FindBugs and FindSecurityBugs, to cover the (security) static analysis of Java code;

• Cppchecker, to cover static analysis in C/C++ code;

• Tox for automatize the static analysis of Python code;

• OWASP Dependency Check, for checking external dependency with Java libraries.

3.1.3.3. Dynamic Analysis Tools Overview
In this section, we want to provide an overview of the dynamic analysis tools to spot security
issues37 available as open source or free. For the comparative analysis, we take in account the
results of the WAVSEP (Web Application Vulnerability Scanner Evaluation Project)38
assessment, which is an evaluation platform containing a collection of vulnerable pages that
can be used to help assessing the features, quality and accuracy of web application vulnerability
scanners. A common way to test and compare the capabilities of today’s scanners is via the
WAVSEP benchmark. After the tools overview, we evaluate them with respect to the
requirements set in Table 10.
OWASP Zed Attack Proxy Project (ZAP)
OWASP ZAP39 is probably the most popular open source (Apache 2.0 License) tool for the
dynamic analysis. A very active and mature community of volunteers supports the project and
its capabilities include not only web application scanning but also penetration test. OWASP
ZAP supports a wide range of scripting languages (i.e. JavaScript, Ruby, Groovy, Python, Zest,
etc.); it also includes a large set of functionalities like intercepting proxy, passive scanner,
forced browsing, etc.40 and provides a REST API to interact programmatically with the tool.
Using the API, ZAP can be enabled as a proxy: it means that ZAP will be positioned between
the browser and the web application to intercept all the requests. Before starting running attack
scenarios, ZAP crawls through the web application and record all URLs from the local domain,
skipping URLs that point to other domains. The API allows the tool to be fully integrated in a

37 Gartner calls this family of tools DAST – Dynamic Application Security Testing, http://www.gartner.com/it-
glossary/dynamic-application-security-testing-dast
38 https://github.com/sectooladdict/wavsep
39 https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
40 More details at https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project#tab=Functionality

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 39 of 48

continuous integration environment. According to the WAVSEP assessment41, ZAP has very
good performance in SQL injection detection and in RFI (Remote File Inclusion, which could
involve XSS attacks) discovery, but it is not the optimum in the discovery of invalidated redirect
URL and it does not support Web Services scanner. Overall, it is considered a very stable tool,
easy to use and simple to configure.
Arachni
Arachni42 is a web application security framework, released free for not commercial
purposes. Its features include crawling and vulnerabilities detection modules and it is in the
top of the scoreboard of the WAVSEP benchmark (96% score)43. It does not support Web
Services crawling and scanning but it provides features for almost all the authentication, control
and connection features observed by WAVSEP. Integrate Arachni in a continuous integration
environment is possible since it provides a couple of different interfaces that can be used for
automation: a command line interface (CLI) as well as REST and an RPC service can be
triggered. Furthermore, the tool is highly customisable since it is possible (for example using
the suitable command in the CLI) run just a set of test to discover a certain type of vulnerabilities
(for example only SQLi) rather than different kind of possible issues.
Syntribos
Syntribos44 is an open source (Apache Licence) automated API security testing tool part of the
OpenStack Security Project. The tools is designed for testing OpenStack API and it is developed
in Python. It allows to test Web Services given a configuration file and an example of HTTP
request, and scans the application to find a large set of vulnerabilities. Some templates are
available as starting point to implement custom security tests. The integration of Syntribos in a
continuous integration environment is not explicitly documented, but, since it is a command
line tool and it is thought to automatize the test, it should be possible to do that. WAVSEP does
not assess this tool.
IronWASP
IronWASP (Iron Web application Advanced Security testing Platform)45 is a security testing
tool distributed under General Public License. The tool is designed to be customizable in order
to allow the user to write custom security scanners for web applications (however, no Web
Service scanner is provided). It means that the user should have Python/Ruby scripting
languages expertise; anyway, the tool provides a set of features useful for beginners and not
development expert. WAVSEP considers IronWASP a great tool for testing applications that
use non-standard input delivery method, but it seems to be more specifically useful for manual
testing46. The use of the IronWASP tool in a continuous integration environment is not officially
reported.

41 http://sectoolmarket.com/web-application-scanners/52.html
42 http://www.arachni-scanner.com/
43 http://sectoolmarket.com/web-application-scanners/57.html
44 https://docs.openstack.org/developer/syntribos/
45 http://ironwasp.org/
46 http://sectoolmarket.com/web-application-scanners/78.html

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 40 of 48

Burp suite
Burp Suite47 is a web application scanning tool produced by PortSwigger. It is present in the
Gartner’s48 "Magic Quadrant for Application Security Testing" in its commercial version, but
it has also free version, with a sub-set of functionalities. Born as intercepting proxy, in the Pro
version includes an advanced Web Vulnerability Scanner for OWASP Top 10 vulnerabilities.
It has a plugin system that extends its scope (e.g. SAML Editor, WSDL Wizard, etc.) and it can
be controlled via open APIs. Burp Suite also enables a static scan of JavaScript code during its
DAST activities and it can be installed in a continuous integration environment.

3.1.3.4. Dynamic Analysis Tools Evaluation
The tools evaluation, summarised in the following table, follows the evaluation criteria also
used for the static analysis tools (Table 10); some of them (C3ISP-Dev-103, C3ISP-Dev-104
and C3ISP-Dev-110) are not applicable for a dynamic analysis tool and they are ignored.
 C3ISP-

Dev-
101

C3ISP-
Dev-102

C3ISP-
Dev-
105

C3ISP-
Dev-
106

C3ISP-
Dev-
107

C3ISP-
Dev-
108

C3ISP-
Dev-
109

C3ISP-
Dev-
111

OWASP ZAP X X (Apache
2.0)

X X X X X -

Arachni X X (free for
not

commercial
use)

X X X - X X

Syntribos X X (Apache) X X X - X -

IronWASP - X (GNU) X X X X X

Burp Suite X X (free
version)

X X - X X X

According to our analysis, OWASP ZAP seems to be the more mature and reliable tool for
dynamic analysis, comply with our needs.

3.2. Test Bed Requirements
The Test Bed Environment has the following objectives:

• Work as an integration environment, where artefacts produced in the Development
Environment can be combined and integrated to form the C3ISP subsystems and
components;

• Be a testing environment, where end-to-end scenarios can be exercised to identify
integration issues and to verify the intended system behaviour;

• Act as the reference C3ISP framework installation to be used by Pilots to realise their
use cases.

To pursue these objectives we identified a set of requirements mainly in terms of infrastructure
setup that we think will help us to fully implement a working C3ISP prototype that will support
in the appropriate way our demonstrators (i.e. the four Pilots).

47 https://portswigger.net/burp/
48 https://www.gartner.com/doc/3107518/magic-quadrant-application-security-testing

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 41 of 48

3.2.1. Test Bed Environment Infrastructure Setup
This environment is constituted by a set of servers, which can be both virtual and physical, to
contain artefacts developed in the C3ISP project. At this time (Month 6), we have designed a
test bed environment with the following machines:

• One Virtual Machine (VM) for the Information Sharing Infrastructure (ISI) artefacts;

• One Virtual Machine for each pilot. So, in total 4 VMs;

• One Physical Server for the Information Analytics Infrastructure (IAI). This machine
should respect the requirements set on Table 20.

Figure 6: Test Bed environment

In the following, we list the requirements that the pilots’ owners set for C3ISP. The project
involves four pilots, which are: ISP Pilot owned by CNR, CERT Pilot owned by the Italian
CERT, Enterprise Pilot owned by SAP and finally the SME Pilot owned by BT. Each use case
is described in its Work Package and details are available in the final deliverables: D2.1, D3.1,
D4.1 and D5.1.
In the following tables, we define three type of requirements for each pilot related to the test
bed requirements: Test Bed (identified as C3ISP-Tst-*), Integration (identified as C3ISP-TsT-
Int-*) and Software related (identified as C3ISP-Tst-Sof-*). Test bed requirements will build
the setup of the machines in the Test Bed environment, Integration will guide the phase of
integration among the different artefacts and machines, and, finally, the Software requirements
will specify additional software components that are needed by each pilot.

3.2.2. ISP Pilot
The ISP Pilot focuses on providing security benefits to Internet Service Providers (ISPs) that
interact with the C3ISP framework by exploiting its analytics operations.
In the following, test bed, integration and software requirements are listed for the ISP pilot.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 42 of 48

3.2.2.1. Test Bed requirements
Table 11 – ISP Pilot – Test Bed Requirements

ID Requirement Priority Description

C3ISP-Tst-101 Server for
remote host
scanning

MUST Two Virtual Machines (master plus
backup) able to run the Security Scan
Software to be used by ISPs. Each VM
will need 4 virtual CPU Cores, 8 GB of
RAM, at least 100 GB of storage, and two
public IPs (one IPv4 and one IPv6)

3.2.2.2. Integration Requirements
Table 12 – ISP Pilot – Integration Requirements

ID Requirement Priority Description

C3ISP-Tst-Int-
101

Internet Service
Providers
integration with
Registro.it

MUST For a proper integration, the virtual
machines, which host the Security Scan
Software, must be reachable by the ISPs
with a public IP

C3ISP-Tst-Int-
102

Internet Service
Providers
integration with
C3ISP

MUST The ISPs must be able to reach the C3ISP
framework to upload and download
report to/from C3ISP

C3ISP-Tst-Int-
103

Integration with
the Information
Sharing
Infrastructure
(ISI)

MUST An ISP must be integrated with the
Information Sharing Infrastructure (ISI)

C3ISP-Tst-Int-
104

Integrity and
confidentiality

SHOULD Support of a protocol to have integrity and
confidentiality security properties in
communications

3.2.2.3. Software Requirements
Table 13 – ISP Pilot – Software Requirements

ID Requirement Priority Description

C3ISP-Tst-Sof-
101

Security Scan
Software

MUST The software used for remote scanning
will be web-accessible so that ISPs can
initiate scan sessions for:

• DNS configuration checks

• Mail configuration glitches

• Operating System checks based

on known vulnerabilities
• Service scan based on service

 discovery (i.e. if FTP is found,

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 43 of 48

FTP-based vulnerabilities will be
tested)

C3ISP-Tst-Sof-
102

Local Scan SHOULD The ISPs should be able to collect local
logs, such as authentication log, and send
them to C3ISP

3.2.3. CERT Pilot
This pilot allows SMEs to participate to a collaborative platform for sharing security relevant
information for early discovery of security threats and attack attempts. In the following, test
bed, integration and software requirements are listed for the CERT Pilot.

3.2.3.1. Test Bed Requirements
Table 14 – CERT Pilot – Test Bed Requirements

ID Requirement Priority Description

C3ISP-Tst-201 Virtual
Machine

MUST A Virtual Machine with Linux OS, at
least 4 cores for computation on big data
for analysis, and at least 200 GB needed
for the data lake.

C3ISP-Tst-202 Programming
language

MUST Java Development Kit with up-to date
installation

3.2.3.2. Integration Requirements
Table 15 – CERT Pilot – Integration Requirements

ID Requirement Priority Description

C3ISP-Tst-Int-
201

Integration with
the Information
Sharing
Infrastructure
(ISI)

MUST Integration with the Information Sharing
Infrastructure (ISI)

C3ISP-Tst-Int-
202

Integrity and
confidentiality

SHOULD Support of a protocol to have integrity and
confidentiality security properties in
communications

3.2.3.3. Software Requirements
No specific software requirements have been identified at this stage.

3.2.4. Enterprise Pilot
The deployment of this Pilot represents a next-generation, enterprise cyber-defence operations
platform based on big data (Hadoop ecosystem) technology.
In the following, test bed, integration and software requirements are listed for the Enterprise
pilot.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 44 of 48

3.2.4.1. Test Bed Requirements
Table 16 – Enterprise Pilot – Test Bed Requirements

ID Requirement Priority Description

C3ISP-Tst-301 Virtual
Machine

MUST A Virtual Machine with Linux OS, at
least 4 cores for computation on big data
for analysis, and at least 200 GB needed
for the data lake.

3.2.4.2. Integration Requirements
Table 17 – Enterprise Pilot – Integration Requirements

ID Requirement Priority Description

C3ISP-Tst-Int-
301

Integrity and
confidentiality

SHOULD Support of a protocol to have integrity and
confidentiality security properties in
communications

C3ISP-Tst-Int-
301

Reuse of data
lake

MUST The pilot is able to integrate with an
already existing big data lake

3.2.4.3. Software Requirements
No specific software requirements have been identified at this stage.

3.2.5. SME Pilot
The SME pilot provides access to a multi-party cloud environment and a managed security
service to enable application & host protection. In the following, test bed, integration and
software requirements are listed for the SME pilot.

3.2.5.1. Test Bed Requirements
Table 18 – SME Pilot – Test Bed Requirements

ID Requirement Priority Description

C3ISP-Tst-401 Data Lake MUST SMEs need at least 200 GByte of storage
for the Data Lake

C3ISP-Tst-402 SME-US-5
SME-US-6
SME-UC-3

MUST FHE services are deployed into a physical
server, not into a Virtual Machine,
because of using parallelism method for
optimizing the Boolean circuits.

3.2.5.2. Integration Requirements
Table 19: SME Pilot - Integration Requirements

ID Requirement Priority Description

C3ISP-Tst-Int-
401

Integrity and
confidentiality

SHOULD Support of a protocol to have integrity and
confidentiality security properties in
communications

3.2.5.3. Software Requirements
No specific software requirements have been identified at this stage.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 45 of 48

3.2.6. Other Test Bed Requirements
CEA provides a runtime environment supporting FHE for Boolean circuits’ optimisation– i.e.
the pre-processing step – linking either with HElib49 or with CEA custom implementation of
the Fan-Vercauteren FHE scheme. The runtime generates OpenMP50 [19] code that is compiled
using GNU g++51 (with –fopenmp activated) where a stand-alone executable binary is produced
and executed with parallelism handled by the OpenMP runtime. Alternately, the optimized
Boolean circuit is interpreted by a parallel Boolean circuit interpreter [20], which allows a fine-
grained dynamic optimisation of the parallelism.

In order to obtain adequate performance, the table below reports the required hardware
specification.
Table 20 – Other Test Bed Requirements

ID Goal Priority Requirement

C3ISP-Tst-001 SME-US-4
SME-US-6
SME-UC-3

MUST To accommodate for FHE requirements,
C3ISP uses a server with the following
specifications52:

• 40 cores;

• 224 GByte RAM;

• 5 TByte Storage.

49 HElib is a C++ software library that implements homomorphic encryption (HE), https://github.com/shaih/HElib
50 OpenMP API is a specification for parallel programming in C/C++/Fortran, http://www.openmp.org/
51 GNU C++ compiler from the GNU Compiler Collection, https://gcc.gnu.org/
52 A server with this setup is provided at CNR premises (Pisa, Italy). Such server satisfies C3ISP-Per-002
requirement.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 46 of 48

4. Conclusions and Next Steps
In this document we outlined the system requirements, both functional and non-functional that
will be used as the foundation to build the C3ISP reference architecture. In particular, the
approach was to understand the Pilots’ and partners’ needs in order to drive the requirements
definition. We put strong emphasis on the data sharing and data analytics features (which are
the core C3ISP functionalities), as well as on the security aspects, including needs and
constraints of the homomorphic encryption techniques that we plan to use to address specific
scenarios.
We also defined the approach and drafted the requirements of how we will setup the
development environment and the test and integration environment (test bed). The former will
be used by the consortium partners as a common ground to build the C3ISP software
subsystems and components, by achieving a high quality product prototype. The latter will be
used by the Pilots to exploit the C3ISP framework services for realising their use cases.
Starting from M6 we will concentrate on the definition of the reference architecture: we have
already sketched the overall ideas throughout the document, in the definition of the C3ISP
Framework (1.2), the use of the CTI data, the leverage of cybersecurity-related standards
(STIX, TAXII, CybOX, OpenC2), or the usage of homomorphic encryption and computation,
just to mention the most important. The architecture definition will proceed in parallel with the
activities of WP8, with which we will collaborate tightly to understand the tools and techniques
that will need to be integrated and used in C3ISP.
The next major goal is to conceive a concrete and viable definition of the reference architecture
at M12 ready to be worked on for later implementation activities.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 47 of 48

5. References
This section lists the references used throughout the document:

[1] K. Brennan, A Guide to the Business Analysis Body of Knowledge, International
Institute of Business Analysis, 2009.

[2] STIX™ – Structured Threat Information Expression, https://oasis-open.github.io/cti-
documentation/, https://stixproject.github.io/, fetched on March 16th, 2017

[3] Guide to Cyber Threat Information Sharing, NIST Special Publication 800-150,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-150.pdf, fetched on
March 16th, 2017

[4] CEF – Common Event Format, https://www.protect724.hpe.com/docs/DOC-1072,
fetched on March 16th, 2017

[5] B. Kepes, Cloudonomics: the Economics of Cloud Computing, Rackspace Hosting,
Diversity Limited, Aug. 2011

[6] Gartner, Gartner Says By 2020, a Corporate "No-Cloud" Policy Will Be as Rare as a
"No-Internet" Policy Is Today, http://www.gartner.com/newsroom/id/3354117, Jun.
2016, fetched on March 16th, 2017

[7] CybOX™ – Cyber Observable eXpression, https://oasis-open.github.io/cti-
documentation/, https://cyboxproject.github.io/, fetched on March 16th, 2017

[8] TAXII™ – Trusted Automated eXchange of Indicator Information, https://oasis-
open.github.io/cti-documentation/, https://taxiiproject.github.io/, fetched on March
16th, 2017

[9] OpenC2 – Open Command and Control, http://openc2.org/, fetched on March 16th, 2017
[10] S, Carpov; T.H. Nguyen; R. Sirdey; G. Constantino; F. Martinelli; Practical

Privacy-Preserving Medical Diagnosis Using Homomorphic Encryption
[11] S. Carpov, P. Dubrulle, R. Sirdey, "Armadillo: a compilation chain for privacy

preserving applications", Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security (3rd International Workshop on Security in
Cloud Computing), pp. 13-19, 2015

[12] Borghoff J. et al. (2012) PRINCE – A Low-Latency Block Cipher for Pervasive
Computing Applications. In: Wang X., Sako K. (eds) Advances in Cryptology –
ASIACRYPT 2012. ASIACRYPT 2012. Lecture Notes in Computer Science, vol 7658.
Springer, Berlin, Heidelberg

[13] Albrecht M.R., Rechberger C., Schneider T., Tiessen T., Zohner M. (2015)
Ciphers for MPC and FHE. In: Oswald E., Fischlin M. (eds) Advances in Cryptology -
- EUROCRYPT 2015. EUROCRYPT 2015. Lecture Notes in Computer Science, vol
9056. Springer, Berlin, Heidelberg

[14] Canteaut A. et al. (2016) Stream Ciphers: A Practical Solution for Efficient
Homomorphic-Ciphertext Compression. In: Peyrin T. (eds) Fast Software Encryption.
FSE 2016. Lecture Notes in Computer Science, vol 9783. Springer, Berlin, Heidelberg

[15] ECRYPT - European Network of Excellence in Cryptology: The eSTREAM
StreamCipher Project (2005).

[16] De Cannière C., Preneel B. (2008) Trivium. In: Robshaw M., Billet O. (eds)
New Stream Cipher Designs. Lecture Notes in Computer Science, vol 4986. Springer,
Berlin, Heidelberg

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.1

Page 48 of 48

[17] N. Bouzerna, R. Sirdey, O. Stan, T.-H. Nguyen and P. Wolf, "An architecture
for practical confidentiality-strengthened face authentication embedding homomorphic
cryptography", Proceedings of the 8th IEEE International Conference on Cloud
Computing Technology and Science, pp. 399-406, 2016.

[18] Junfeng Fan, Frederik Vercauteren: Somewhat Practical Fully Homomorphic
Encryption. IACR Cryptology ePrint Archive 2012: 144 (2012)

[19] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (January 1998),
46-55. DOI=http://dx.doi.org/10.1109/99.660313

[20] Berkeley Verification and Synthesis Research Center, A System for Sequential
Synthesis and Verification https://bitbucket.org/alanmi/abc

[21] Stober, Thomas –Hansmann, Uwe “Agile Software Development: Best
Practices for Large Software Development Projects” -Springer 2009

[22] Bass, Len Ingo Weber, Zhu Liming – Hansmann, Uwe DevOps: A Software
Architect’s Perspective” –Addison-Wesley Professional 2015

[23] A Python module for creating JUnit XML test result documents,
https://pypi.python.org/pypi/junit-xml, fetched on March 16th, 2017

[24] NIST Glossary of Key Information Security Terms,
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf, fetched on March 16th,
2017

[25] Gartner Newsroom, http://www.gartner.com/newsroom/id/3354117, fetched on
March 16th, 2017

