
H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 1 of 104

30/09/2018

Version 1.0

Due date of deliverable: 30/09/2018

Actual submission date: 30/09/2018

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

C3ISP
Collaborative and Confidential Information Sharing and Analysis for Cyber

Protection

First version of the C3ISP platform and

test bed

WP7 – C3ISP platform: Requirements / Architecture /

Implementation and integration

D7.3

Responsible partner: HPE

Editor: Mirko Manea

E-mail address: mirko.manea at hpe.com

The C3ISP Project is supported by funding under the Horizon 2020

Framework Program of the European Commission DS 2015-1, GA #700294

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 2 of 104

Authors: M. Manea, P. Ciampoli, M. Russo (HPE), T.

Nguyen, V. Herbert (CEA), I. Herwono (BT), R.

de Lemos, D. Chadwick, J. Ziembicka, W. Fan

(UNIKENT), F. Di Cerbo, J. Boehler (SAP), P.

Mori, A. Saracino, G. Costantino, I. Matteucci

(CNR), J. Dobos, C. Wong (3D REPO), R.

Hamouda (GPS), S. Tranquillini, A. Arighi

(CHINO)

Approved by: C. Fox (DIGICAT), P. Niamadio (GPS)

Revision History

Version Date Name Partner Sections Affected / Comments

0.1 22-Mar-2018 M. Manea HPE Initial ToC

0.2 23-Apr-2018 M. Manea HPE Revised ToC

0.3 27-Jul-2018 M. Manea HPE Improved ToC sections and merged

first contributions

0.4 27-Aug-2018 M. Manea, P.

Ciampoli, M.

Russo, I. Herwono,

S. Tranqullini, A.

Arighi

HPE, BT,

CHINO

Merged HPE, BT and CHINO

contributions

0.5 04-Sep-2018 M. Manea, J.

Dobos, R. de

Lemos, D.

Chadwick, J.

Ziembicka, W. Fan,

P. Mori, A.

Saracino, G.

Costantino, I.

Matteucci, F. Di

Cerbo

HPE, 3D

REPO,

UNIKENT,

CNR, SAP

Merged 3D REPO, UNIKENT, CNR,

SAP contributions

0.6 13-Sep-2018 M. Manea HPE Revised all contributions ready for

internal review process

0.7 15-Sep-2018 C. Fox DIGICAT Revised document

0.8 18-Sep-2018 P. Niamadio GPS Revised document

0.9 20-Sep-2018 M. Manea, I.

Herwono, T.

Nguyen

HPE, BT,

CEA

Addressed internal reviewers

comments

1.0 30-Sep-2018 M. Manea HPE Final version

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 3 of 104

Executive Summary
The main objective of this deliverable is to describe the release of the C3ISP Demonstrator for

the first version of the implemented C3ISP Framework, as well as of the test bed, due at Month

24.

First, we present the updated high-level architecture: some refinements have been done during

the past twelve months, in particular the role of some components have been clarified (DPOS

API and DSA Manager Gateway, to interact respectively with the DPOS and the DSA Manager

subsystems) and some have been added (Buffer Manager used to create Data Lakes for running

the analytics services).

The document contains a dedicated section to describe what has been released as software

artefacts and describes precisely each software module, its pre-requisites, the installation

procedures and operational guidelines.

We present also the methodology we used to assure that the first implementation of the C3ISP

reference architecture is of high-quality: in fact, we laid out the testing activities guidelines for

each component, as well as each partner responsibility.

The deliverable continues by illustrating the updates to each subsystem (Information Sharing

Infrastructure – ISI, Information Analytics Infrastructure – IAI, DSA Manager, Common

Security Services – CSS) and the status of the implementation and integration for the software.

We also describe the workflow of major C3ISP use cases, which have been refined with many

details.

The document concludes with a description of the status of the C3ISP development and test bed

environments, where we have deployed this first version of the framework.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 4 of 104

Table of contents

Executive Summary ... 3

1. Introduction .. 7

1.1. Overview ... 7

1.2. Deliverable Structure ... 7

1.3. Definitions and Abbreviations ... 7

2. High-Level Architecture at M24 .. 10

3. Delivered C3ISP Software ... 12

3.1. Software artefacts .. 12

3.2. Pre-requisites ... 13

3.3. Installation procedures ... 14

3.3.1. ISI – Information Sharing Infrastructure .. 14

3.3.2. IAI – Information Analytics Infrastructure .. 15

3.3.3. DSA Manager ... 15

3.3.4. CSS – Common Security Services ... 16

3.3.5. Deployment models .. 16

3.4. Operational procedures .. 17

3.4.1. ISI API .. 17

3.4.2. IAI API ... 19

3.4.3. DSA Editor ... 20

4. First version of developed C3ISP platform .. 23

4.1. System Integration Methodology .. 23

4.2. Integration process ... 23

4.2.1. Integration step 1 – Identification of the communication interfaces 23

4.2.2. Integration step 2 – Agreement about the responsibilities 28

4.2.3. Integration step 3 – Definition of the communication interfaces 31

4.2.4. Integration step 4 – Setup of the integration environment 32

4.2.5. Integration step 5 – Point-to-point integration tests ... 33

4.2.6. Integration step 6 – Multi-point integration tests ... 36

4.2.7. Integration step 7 – Final system scenarios tests .. 37

5. Subsystem Updates & Status: ISI – Information Sharing Infrastructure 38

5.1. DSA Adapter ... 39

5.1.1. DSA Adapter Front End ... 40

5.1.2. Event Handler ... 41

5.1.3. Continuous Authorization Engine .. 42

5.1.4. Obligation Engine .. 46

5.1.5. DMO Engine .. 48

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 5 of 104

5.1.6. Bundle Manager ... 50

5.2. Format Adapter .. 53

5.2.1. Implementation and Integration Status .. 53

5.2.2. Published APIs ... 54

5.3. Buffer Manager .. 54

5.3.1. Implementation and Integration Status .. 55

5.3.2. Published APIs ... 56

5.4. Data Protected Object Store API ... 56

5.4.1. Implementation and Integration Status .. 56

5.4.2. Published APIs ... 57

5.5. Data Protected Object Store .. 57

5.5.1. Implementation and Integration Status .. 57

5.6. ISI API ... 58

5.6.1. Implementation and Integration Status .. 58

5.6.2. Published APIs ... 58

6. Subsystem Updates & Status: IAI – Information Analytics Infrastructure 59

6.1. C3ISP Analytics Engine .. 60

6.1.1. Implementation and Integration Status .. 60

6.1.2. FHE Analytics .. 61

6.1.3. Interactive 3D Visualisation ... 63

6.2. Service Usage Control Adapter ... 65

6.2.1. Implementation and Integration Status .. 65

6.3. Interface to Legacy Analytics Engines .. 66

6.3.1. Implementation and Integration Status .. 66

6.4. Virtual Data Lake .. 67

6.4.1. Implementation and Integration Status .. 67

6.5. IAI API .. 68

6.5.1. Implementation and Integration Status .. 68

6.5.2. Published APIs ... 69

7. Subsystem Updates & Status: DSA Manager .. 70

7.1. DSA Editor .. 71

7.1.1. Implementation and Integration Status .. 71

7.2. DSA Mapper .. 72

7.2.1. Implementation and Integration Status .. 72

7.2.2. Published APIs ... 73

7.3. DSA Store API .. 73

7.3.1. Implementation and Integration Status .. 74

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 6 of 104

7.3.2. Published APIs ... 74

7.4. DSA Manager Gateway ... 74

7.4.1. Implementation and Integration Status .. 75

7.4.2. Published APIs ... 76

7.5. DSA Store .. 76

7.5.1. Implementation and Integration Status .. 76

8. Subsystem Updates: CSS – Common Security Services ... 78

8.1. Identity Manager .. 78

8.1.1. Implementation and Integration Status .. 79

8.2. Key and Encryption Manager .. 79

8.2.1. Implementation and Integration Status .. 81

8.2.2. K&E Core ... 81

8.2.3. Key Management: Key Generation & Access ... 82

8.2.4. Encryption and decryption ... 86

8.3. Secure Audit Manager ... 88

8.3.1. Implementation and Integration Status .. 90

9. Updated Data Flow Diagrams .. 91

9.1. Create DPO .. 91

9.2. Read DPO .. 92

9.3. Delete DPO .. 92

9.4. Invoke C3ISP analytics service ... 93

9.5. Invoke legacy analytics service ... 94

10. Updates on the Development and Test Bed Environments ... 95

10.1. Development Environment .. 95

10.1.1. Base configuration .. 95

10.1.2. Software configuration ... 95

10.2. Test Bed Environment ... 96

10.2.1. Base configuration .. 96

10.2.2. Software configuration ... 98

11. Conclusions ... 100

12. Appendix 1: Swagger API URLs .. 101

13. References ... 103

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 7 of 104

1. Introduction

1.1. Overview

This document presents the first version of the reference architecture implementation for the

C3ISP Framework, as it has been originally designed in D7.2. It also describes how the

architecture evolved in the last year to address specific Pilots’ requirements. The document

describes also the released artefacts and the methodology used for testing the framework in a

structured way. Finally, it provides updated data flow diagrams for the most important use cases

provided by the C3ISP Framework (if changed with respect to original M12 architecture) and

updates on the development and test best environments.

1.2. Deliverable Structure

The document is structured as follows:

 Section 2 is dedicated to illustrate the C3ISP architecture implemented for M24;

 Section 3 describes the software artefacts delivered for the first version of the C3ISP

Framework;

 Section 4 shows the methodology used for testing in order to assure a high-quality

software release;

 Section 5, 6, 7, 8 reports on the C3ISP subsystems updates respectively for ISI, IAI,

DSA Manager and CSS, as well as their current implementation and integration status;

 Section 9 illustrates the fundamental C3ISP flows as they have matured during the last

year;

 Section 10 describes updates we have done on the development and test bed

environments used for implementation;

 Section 11 draws on conclusions and next steps;

 Section 12 onwards contain appendixes.

1.3. Definitions and Abbreviations

Term Meaning

AES Advanced Encryption Standard

C&C Command and Control

C3ISP Collaborative and Confidential Information Sharing and Analysis for

Cyber Protection

CybOX Cyber Observable eXpression

CI Continuous Integration

CPE Common Platform Enumeration

CSP Cloud Service Provider

CSS Common Security Services

CTI Cyber Threat Information

CVE Common Vulnerability and Exposure

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 8 of 104

CWE Common Weakness Enumeration

DAST Dynamic Application Security Testing

DDoS Distributed Denial of Service

DMO Data Manipulation Operations

DoW Description of Work for Grant Agreement: 700294 — Collaborative and

Confidential Information Sharing and Analysis for Cyber Protection

(C3ISP)

DPOS Data Protected Object Store

DPO Data Protected Object

DSA Data Sharing Agreement

FHE Full Homomorphic Encryption

GDPR General Data Protection Regulation (EU 2016/679), http://eur-

lex.europa.eu/eli/reg/2016/679/oj

IAI Information Analytics Infrastructure

IDE Integrated Development Environment

IDS Intrusion Detection System

IP Internet Protocol

ISI Information Sharing Infrastructure

LTS Long-Term Support

LOWMC Low Multiplicative Complexity (a family of block ciphers)

MITRE The MITRE Corporation, https://www.mitre.org/

NFR Non Functional Requirement

NVD National Vulnerability Database

OASIS Organization for the Advancement of Structured Information Standards

OWASP Open Web Application Security Project

OpenC2 Open Command and Control

MoSCoW Must have, Should have, Could have, and Won’t have but would like

Multiplicative

depth

Multiplicative depth is the maximum number of multiplicative gates

between an input and an output of the circuit

PKI Public Key Infrastructure

PRINCE 64-bit block cipher with a 128-bit key optimized for low latency in

hardware

Prosumer An entity which is both a producer and a consumer of information, in

particular of Cyber Threat Information

REST Representational state transfer, a type of web services

RFI Remote File Inclusion attack

http://eur-lex.europa.eu/eli/reg/2016/679/oj
http://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.mitre.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 9 of 104

SaaS Software as a Service

SQLi SQL injection attack

STIX Structured Threat Information eXpression

TAXII Trusted Automated eXchange of Indicator Information

TTP Techniques, Tactics and Procedures

VCG VisualCodeGrepper

VM Virtual Machine

WAVSEP Web Application Vulnerability Scanner Evaluation Project

XSS Cross-Site Scripting attack

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 10 of 104

2. High-Level Architecture at M24
This section illustrates the current C3ISP Framework reference architecture as evolved at M24:

Figure 1: C3ISP high-level architecture – version Month 24

The C3ISP architecture is still composed by 4 major subsystems, whose role has not changed,

namely:

 Information Sharing Infrastructure – ISI, devoted to providing sharing capabilities of

CTI data regulated through sophisticated policies embedded in Data Sharing

Agreements (DSAs);

 Information Analytics Infrastructure – IAI, responsible for regulating the execution of

analytics services on the data shared through the ISI, hence governed by the DSAs;

 DSA Manager, for authoring the DSAs and handling their lifecycle, from initial writing

in high-level language (CNL – Controlled Natural Language) to mapping in its

enforceable representation (UPOL – Usage Policy Language1);

 Common Security Service – CSS, useful to provide services that operate across the other

subsystems, like handling of identities and their authentication/authorization,

encryption-related activities, and system auditing.

1 UPOL is a low level directly enforceable XACML-based policy language, developed in the Coco Cloud FP7

project (grant no. 610853)

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 11 of 104

We have also clarified better some flows between the subsystems (see Section 9) which resulted

in the following changes:

 In the ISI, we introduced the Buffer Manager component to be able to create data

repositories where the analytics services can work to perform their function. These data

repositories (or data lakes) are created as temporary data buffers that have a limited

lifespan (e.g. the analytics execution), obey the DSA policies (e.g. DMOs like data

anonymization are applied before putting the data on the “lake”) and respect specific

formats. The Buffer Manager interacts with the ISI API (see prepareData method

exposed by ISI API in Section 5.6) and with the Format Adapter (to appropriately

“format” the data lake for correct analytics consumption, see Section 5.2). This

component is described in Section 5.3;

 In the ISI, we decoupled the interaction between DSA Adapter and the Data Protected

Object Store2 by adding a DPOS API component, which provides (and abstracts) the

interface towards the DPOS. Previously, this role was in the component internal to the

DSA Adapter called DPOS Connector, which has been removed. The DPOS API

component is described in Section 5.4;

 In the DSA Manager, the DSA API has been split in two components, namely DSA

Manager Gateway and DSA Store API. The DSA Store API is a CRUD-like interface

to the DSA Store repository, while the DSA Manager Gateway exposes higher level

API (like retrieve of the DSA state, which is a property of the DSA; or returning the

UPOL representation of the DSA, which is a part of a mapped DSA) by interacting with

the DSA Store API. These components are described respectively in Sections 7.1 and

7.3.

2 In D7.2 the DPOS was called “Data Protected Object Storage”; in D7.3 we renamed it to “Data Protected Object

Store” to have consistent names with the another store we have (“DSA Store”)

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 12 of 104

3. Delivered C3ISP Software
This section describes the software artefacts released at month 24, their installation procedure

with pre-requisites, and their operational procedures for usage/integration.

3.1. Software artefacts

The following depot containing all the C3ISP Framework artefacts are available for download3:

 https://devc3isp.iit.cnr.it/protected/C3ISP_Framework-M24.tar.gz

The table below lists the released software components contained in the depot. They are

provided in packaged archives ready to be used for installation following the steps described in

the next sub-sections.

Table 1 – Released software components for C3ISP Framework at M24

Subsyste

m
Component Module Filename

ISI DSA Adapter
DSA Adapter

Front End
ISI/dsa-adapter-frontend.war

ISI DSA Adapter Event Handler ISI/event-handler.war

ISI DSA Adapter

Continuous

Authorization

Engine

ISI/multi-resource-handler.war

ISI/UsageControlFramework.war

ISI DSA Adapter
Obligation

Engine

ISI/trigger-engine.war

ISI/action-engine.war

ISI DSA Adapter DMO Engine ISI/dmo-engine.war

ISI DSA Adapter Bundle Manager ISI/bundle-manager.war

ISI Format Adapter - ISI/converter.js

ISI Buffer Manager - ISI/buffer-manager.war

ISI DPOS API - ISI/dpos-api.war

ISI ISI API - ISI/isi-api.war

IAI
C3ISP Analytics

Engine
-

IAI/iai-api.war4

IAI/monitoring-dga.war

IAI
C3ISP Analytics

Engine
FHE Analytics IAI/fhe-conn-malicious-host.war

IAI
C3ISP Analytics

Engine

Interactive 3D

Visualization

https://github.com/3drepo/3drepo.io/arch

ive/2.16.0.tar.gz

URL: https://www.3drepo.io/5

IAI
Service Usage

Control Adapter
- Not currently deployed

IAI

Interface to

Legacy Analytics

Engines

- Uses IAI API

3 The access to this site is protected; credentials are delivered separately.

4 This C3ISP release contains the C3ISP Analytics services bundled with the IAI API. It is planned to change in

the next release.

5 The access to this site is protected; request access for visualisations uploaded by other accounts

https://devc3isp.iit.cnr.it/protected/C3ISP_Framework-M24.tar.gz
https://github.com/3drepo/3drepo.io/archive/2.16.0.tar.gz
https://github.com/3drepo/3drepo.io/archive/2.16.0.tar.gz
https://www.3drepo.io/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 13 of 104

IAI Virtual Data Lake -
This is implemented with an off-the-shelf

product

IAI IAI API - IAI/iai-api.war

DSA

Manager
DSA Editor

DSA Editor

Front-end
DSA_Manager/DSAEditor.war

DSA

Manager
DSA Editor DSA Editor Tool DSA_Manager/DSAAuthoringTool.war

DSA

Manager

DSA Manager

Gateway
- DSA_Manager/DSAAPI.war

DSA

Manager
DSA Mapper - DSA_Manager/dsa-mapper.war

DSA

Manager
DSA Store -

This is implemented with an off-the-shelf

product

DSA

Manager
DSA Store API - DSA_Manager/dsa-store-api.war

CSS Identity Manager -
This is implemented with an off-the-shelf

product

CSS

Key and

Encryption

Manager

K&E Core CSS/ke-core-manager-api.war

CSS

Key and

Encryption

Manager

DPO – Key &

Encryption

Manager

CSS/dpos-encryption.war

CSS/dpos-key.war

CSS

Key and

Encryption

Manager

FHE – Key &

Encryption

Manager

CSS/fhe-encryption.war

CSS/fhe-keys.war

CSS
Secure Audit

Manager
-

This is implemented with an off-the-shelf

product

3.2. Pre-requisites

The deployment of the C3ISP subsystems (ISI, IAI, DSA Manager, CSS) depends on the

availability of hardware (or virtual hardware) and third-party software that must be installed. It

is critical to install the pre-requisites to have a working C3ISP environment.

The versions reported in the next tables are those tested; generally, we do not foresee

incompatibilities with newer versions.

Table 2 – Hardware requirements

Subsystem Tested hardware Operating System

ISI 2 vCPU, 6 GB RAM, 100 GB HDD Linux Ubuntu 16.04 LTS

IAI6 40 CPU, 256 GB RAM, 6TB HDD Linux Ubuntu 16.04 LTS

DSA Manager 2 vCPU, 4 GB RAM, 40 GB HDD Linux Ubuntu 16.04 LTS

CSS 6 vCPU, 8 GB RAM, 20 GB HDD Linux Ubuntu 16.04 LTS

6 This powerful machine is physical and its hardware characteristics are required for FHE computation.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 14 of 104

Table 3 – Software requirements

Subsystem Third party software Version Description

ISI

Java JRE

Apache Tomcat

NodeJS

Apache Hadoop HDFS

Mongo DB

1.8.0_181

8.0.32

8.11.4

3.0.0

3.2.20

Java runtime engine

Java servlet container to run C3ISP ISI modules

Javascript engine to run Format Adapter

DPOS

Part of DPOS for DPOS metadata

IAI

Java JRE

Apache Tomcat

MySQL

Apache Hadoop HDFS

Cingulata7

1.8.0_181

8.0.32

5.7.23

3.0.0

N/A

Java runtime engine

Java servlet container to run C3ISP IAI modules

Internal DB for DGA; also act as VDL

Virtual Data Lake (VDL)

Cingulata compiler toolchain

DSA

Manager

Java JRE

Apache Tomcat

MongoDB

MySQL

1.8.0_181

8.0.32

3.2.20

5.7.23

Java runtime engine

Java servlet container to run C3ISP ISI modules

DSA Store

Profile Store for DSA Editor

CSS

Java JRE

Apache Tomcat

HashiCorp Vault

MySQL

OpenLDAP

Cingulata

1.8.0_181

8.0.32

0.10.0

5.7.23

2.4.42

N/A

Java runtime engine

Java servlet container to run C3ISP ISI modules

Key manager service

Backend for Vault

Identity Manager service

Cingulata compiler toolchain

3.3. Installation procedures

The installation procedures are split for subsystem and described in the next sections.

3.3.1. ISI – Information Sharing Infrastructure

Most of the ISI released components runs on top of Apache Tomcat, which needs to be installed

and running before proceeding with the ISI C3ISP installation.

The following ISI components are released as a Web Archive (.war) files; installation is

straightforward and requires to upload the war files onto Tomcat. The Tomcat version shipped

with Ubuntu Linux requires the war files to be copied to /var/lib/tomcat8/webapps.

Table 4 – ISI components (1)

Component Path and file

DSA Adapter Front End /var/lib/tomcat8/webapps/dsa-adapter-frontend.war

Event Handler /var/lib/tomcat8/webapps/event-handler.war

Continuous Authorization Engine
/var/lib/tomcat8/webapps/multi-resource-handler.war

/var/lib/tomcat8/webapps/UsageControlFramework.war

Obligation Engine
/var/lib/tomcat8/webapps/trigger-engine.war

/var/lib/tomcat8/webapps/action-engine.war

DMO Engine /var/lib/tomcat8/webapps/dmo-engine.war

7 See D8.3 and https://github.com/CEA-LIST/Cingulata

https://github.com/CEA-LIST/Cingulata

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 15 of 104

Bundle Manager /var/lib/tomcat8/webapps/bundle-manager.war

Buffer Manager /var/lib/tomcat8/webapps/buffer-manager.war

Data Protected Object Storage /var/lib/tomcat8/webapps/dpos-api.war

ISI API /var/lib/tomcat8/webapps/isi-api.war

The following ISI component runs on NodeJS. It is required to deploy this on top of NodeJS;

we use PM2 (Process Manager 28, a nodejs application runner):

Table 5 – ISI components (2)

Component Path and file

Format Adapter /home/nodejs/format-adapter/converter.js

3.3.2. IAI – Information Analytics Infrastructure

Most of the IAI released components run on top of Apache Tomcat, which needs to be installed

and running before proceeding with the IAI C3ISP installation.

The following IAI components are released as a Web Archive (.war) files; installation is

straightforward and requires to upload the war files onto Tomcat. The Tomcat version shipped

with Ubuntu Linux requires the war files to be copied to /var/lib/tomcat8/webapps.

Table 6 – IAI components

Component Path and file

IAI API /var/lib/tomcat8/webapps/iai-api.war

FHE Analytics /var/lib/tomcat8/webapps/fhe-conn-malicious-host.war

C3ISP Analytics Engine /var/lib/tomcat8/webapps/monitoring-dga.war

3.3.3. DSA Manager

All DSA Manager released components run on top of Apache Tomcat, which needs to be

installed and running before proceeding with the DSA Manager C3ISP installation.

The following DSA Manager components are released as a Web Archive (.war) files;

installation is straightforward and requires to upload the war files onto Tomcat. The Tomcat

version shipped with Ubuntu Linux requires the war files to be copied to

/var/lib/tomcat8/webapps.

Table 7 – DSA Manager components

Component Path and file

DSA Editor
/var/lib/tomcat8/webapps/DSAEditor.war

/var/lib/tomcat8/webapps/DSAAuthoringTool.war

DSA Mapper /var/lib/tomcat8/webapps/dsa-mapper.war

DSA Manager Gateway /var/lib/tomcat8/webapps/DSAAPI.war

DSA Store API /var/lib/tomcat8/webapps/dsa-store-api.war

8 http://pm2.keymetrics.io/

http://pm2.keymetrics.io/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 16 of 104

3.3.4. CSS – Common Security Services

All CSS released components run on top of Apache Tomcat, which needs to be installed and

running before proceeding with the installation.

The following components are released as a Web Archive (.war) files; installation is

straightforward and requires to upload the war files onto Tomcat. The Tomcat version shipped

with Ubuntu Linux requires the war files to be copied to /var/lib/tomcat8/webapps.

Table 8 – CSS components

Component Path and file

Key and Encryption Manager

/var/lib/tomcat8/webapps/ke-core-manager-api.war

/var/lib/tomcat8/webapps/dpos-key.war

/var/lib/tomcat8/webapps/dpos-encryption.war

/var/lib/tomcat8/webapps/fhe-key.war

/var/lib/tomcat8/webapps/fhe-encryption.war

3.3.5. Deployment models

As described in D7.2, several deployment models are available. Pilots use the following C3ISP

deployment models.

Table 9 – Deployment models in the Pilots

Pilot Hybrid Fully centralised

ISP Pilot

CERT Pilot

Enterprise Pilot

SME Pilot

The fully centralised model has a single instance of ISI, IAI, DSA Manager and CSS. The

installation procedure described above addresses the C3ISP fully centralised deployment model.

The hybrid mode has a local ISI and a centralised ISI, while keeping a single central IAI, as

well as DSA Manager and CSS. For this reason, to install a hybrid C3ISP deployment we need

to instantiate at least two ISIs, one acting as the central ISI part, the other(s) as local ISI(s).

Considering a deployment with a single local ISI, we need to have a dedicate host (or virtual

machine) where the ISI components will run, as reported in Table 4 – ISI components (1) and

Table 5 – ISI components (2). With respect to the ISI pre-requisites (Table 3 – Software

requirements), the DPOS will be configured to use a local filesystem, instead of the more

resource-intensive and complex Apache HDFS, which is better suited for the central ISI. A

“move DPO” operation transfers the created CTI bundle from the local ISI to the central ISI.

Table 10 summarises the configuration changes for the local ISI deployment.

Table 10 – Configuration changes for local ISI deployment

Component Description

DPOS Configured to work on local filesystem instead of HDFS

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 17 of 104

ISI API ISI API is configured to allow “create DPO” operation, only.

Of course, that operation triggers the DSA policy evaluation

at the local ISI, including enforcement of DMOs, if any.

After the create DPO, ISI API should automatically invoke a

“move DPO” operation. The move will transfer the CTI

bundle from the local ISI to the central ISI.

At M24, the move operation is not automatically triggered

and must be explicitly issued. Further, at this stage, bundle

encryption keys are assumed to be the same between local

and central ISI.

3.4. Operational procedures

This section describes how the installed C3ISP Framework can be used/tested and how it can

be integrated into/used by an application. To support these needs, C3ISP provides external

APIs based on the RESTful web services paradigm (see D7.2, Section 2.1 where we described

it), where there is a list of http endpoints that can be called programmatically. To easier testing,

developers/testers can call the APIs through a simple web interface that describes their

signatures and allows specifying the required parameters (these are based on Swagger Open

API, as discussed in Section 4.2.5 and also in D7.2).

The external APIs are the only required to use the C3ISP functionalities and are used by the

applications (i.e. Pilots). These APIs are the following:

Table 11 – C3ISP External APIs

Subsystem Component How

ISI ISI API RESTful webservices

IAI IAI API RESTful webservices

DSA Manager DSA Editor Web interface

The next sections briefly detail those interfaces. For more information, please refer to Sections

5.6 (ISI API), 6.5 (IAI API), 7.1 (DSA Manager) and the descriptions contained in D7.3.

3.4.1. ISI API

ISI API provides the functionalities of data sharing, including how to submit a CTI data to

C3ISP and how to read it after.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 18 of 104

APIs are documented via Swagger:

Figure 2: ISI API from Swagger UI

For example, to submit a CTI data to C3ISP, one needs to invoke a POST request on URL

“/v1/dpo”, passing as input an HTTP Form with two parameters:

 A file, with HTTP Form name = “fileToSubmit”;

 A JSON string, with HTTP Form name = “inputMetadata”.

The format of the JSON metadata can be depicted as follows:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : "ns:c3isp:dpo-metadata",

 "Value" : "{\"id\":\"4000123\",\"dsa_id\":\"DSA-56976731-3c16-46cc-a4e1-

8384c6208eb0\",\"start_time\":\"2017-12-14T12:00:00.0Z\",\"end_time\":\"2017-12-

14T18:01:01.0Z\",\"event_type\":\"Firewall Event\",\"organization\":\"3DRepo\"}",

 "DataType" : "string"

 }]

 }

}

The return of such call is a JSON string, containing the DPO-Id associated to the file (if the

request was successfully completed).

In order to read a CTI shared data, one needs to invoke a GET request on URL “/v1/dpo/<dpo-

id>”, where <dpo-id> must be replaced with the requested DPO-Id as received from the create

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 19 of 104

DPO call. Optionally, it is possible to submit as input a JSON string as HTTP header “X-c3isp-

input_metadata” in the following format:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired metadata>,

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}

For further documentation, please refer to 5.6.

3.4.2. IAI API

IAI API provides the functionalities for running the analytics services on the data shared via

ISI API.

APIs are documented via Swagger:

Figure 3: IAI API from Swagger UI

For example, to run an analytics service on a CTI shared data, one needs to invoke a POST

request on URL “/v1/runAnalytics”, passing as input an HTTP Form with the following

parameter:

 A JSON string, with HTTP Form name = “param”.

The format of the JSON structure can be depicted as follows:

{

 "metadata": {},

 "searchCriteria": {

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 20 of 104

 "combiningRule": "or",

 "criteria": [

 {

 "attribute": "event_type",

 "operator": "eq",

 "value": "DNS Query Request"

 }

]

 },

 "serviceName": "detectDGA",

 "serviceParams": {}

}

The return of such call is a JSON string, containing the DPO-Id associated to the result object

(if the request was successfully completed).

The result is accessed via read API available in ISI API.

For further documentation, please refer to Section 6.5.

3.4.3. DSA Editor

DSA Editor is a web interface that allows defining the policies that regulate the CTI data sharing,

including defining rules of access and usage control on shared data, on analytics services and

results, and rules to handle data manipulation operations.

The following screenshots gallery presents the main DSA Editor screens. For further

documentation, please refer to Section 7.1 and D8.2.

Figure 4: Login Screen

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 21 of 104

Figure 5: DSAs List

Figure 6: Show DSA

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 22 of 104

Figure 7: Edit DSA

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 23 of 104

4. First version of developed C3ISP platform
An important task of this work package (T7.3) is the system integration activities that aim to

produce a working system from the distinct subsystems, components and modules developed

for providing the C3ISP functionalities by means of the collaboration between the different

consortium partners. The final goal is to have the implementation of the C3ISP reference

architecture conceived in D7.2.

4.1. System Integration Methodology

The proposed integration process follows a step-by-step integration methodology to facilitate

early identification and solution of integration problems. This process aims at mitigating the

risk of failing the overall integration effort, by solving the major technical issues at an early

stage.

The integration process comprises the following steps:

1. Identification of the communication interfaces;

2. Agreement about the responsibilities;

3. Definition of the communication interfaces;

4. Setup of the integration environment;

5. Point-to-point integration tests;

6. Multi-point integration tests;

7. Final system scenarios tests.

Collaboration between project partners, working remotely throughout Europe, has been

fostered and improved by holding regular weekly conference calls, in addition to traditional e-

mail communication using a dedicated mailing list. During the face-to-face meetings, we also

always allocate dedicated slots for digging into the main issues.

4.2. Integration process

The following section illustrates how we setup the integration framework in order to

successfully deliver the release of the C3ISP prototypes planned for M24.

4.2.1. Integration step 1 – Identification of the communication interfaces

C3ISP developers use unit tests for verifying the functionalities of the artefacts they are working

on and further they perform integration tests at component level to check that every inner

software module is properly working to implement the expected component behaviour.

The very first version of each component is tested using a black-box approach that includes

feeding the component with input/output data from static files or stub programs and study the

resulting behaviour at the borders. To integrate different components together we choose to

have a network communication interface in order to exchange data at runtime. The

communication between the different components and subsystems is reported in the

architectural diagram in Figure 1, where the “links” show interacting components.

The following tables show per each subsystem and for each component the modules and the

consortium partner that is developing it. When component has only one module, module name

is not specified.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 24 of 104

The next table is related to the ISI Subsystem:

Table 12 – ISI Subsystem: components, modules and partners

Component

Symbol

Component

Name

Module

Symbol

Module

Name
Owner

DSAAD DSA Adapter

CAE Continuous Authorization Engine CNR

OE Obligation Engine SAP

DMO DMO Engine SAP

EH Event Handler CNR/SAP

DSAFE DSA Adapter Front End CNR/SAP

BUNDM Bundle Manager CEA

FORM Format Adapter - - GPS

BUFM Buffer Manager - - CHINO

DPOS DPOS - - UNIKENT

DPOSAPI DPOS API - - UNIKENT

ISIAPI ISI API - - SAP

The next table is related to the IAI Subsystem:

Table 13 – IAI Subsystem: components, modules and partners

Component

Symbol

Component

Name

Module

Symbol

Module

Name
Owner

ANENG C3ISP Analytics Engine

ANENG C3ISP Analytics Engine CNR

FHEAN FHE Analytics CEA

I3DVIS Interactive 3D Visualisation 3D REPO

SUSC
Service Usage Control

Adapter
- - CNR

LAS Legacy Analytics Service - - BT

VDL Virtual Data Lake - - BT

IAIAPI IAI API - - CNR

The next table is related to the DSA Manager Subsystem:

Table 14 – DSA Manager: components, modules and partners

Component

Symbol

Component

Name

Module

Symbol

Module

Name
Owner

DSAED DSA Editor
DSAEFE DSA Editor Front End HPE

DSAET DSA Editor Tool HPE

DSAMG DSA Manager Gateway - - HPE

DSAMAP DSA Mapper - - CNR

DSASTO DSA Store - - HPE

DSASTOAPI DSA Store API - - UNIKENT

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 25 of 104

The next table is related to the CSS Subsystem:

Table 15 – CSS: components, modules and partners

Component

Symbol

Component

Name

Module

Symbol

Module

Name
Owner

IDM Identity Manager - - CNR

K&EM Key & Encryption Manager KEC K&E Core CEA

KEYM Key Management CEA

DPOKEM DPO - K&E Mng CEA

FHEKEM FHE - K&E Mng CEA

SECAUDM Secure Audit Manager - - HPE

Identity Manager and Secure Audit Manager could be integrated with external systems (off-

the-shelf). For demonstrator, Identity Management is realized with an OpenLDAP (it could also

be integrated with an Enterprise LDAP, like Microsoft Active Directory). Please note that some

functionalities are provided by external tools, integrated via DMO Engine Plugin based

architecture (see 5.1.5).

Table 16 – External systems integrated with C3ISP

Subsystem Symbol System Owner

ISI ANONT Anonymization Toolbox SAP

ISI FHE Full Homomorphic Encryption Toolbox CEA

IAI I3DVIZ 3D Repo Visualization Engine 3D REPO

IAI SATURN BT Saturn tool BT

CSS LDAP Open LDAP CNR

CSS LOG Secure Audit Tool HPE

C3ISP has external end-to-end interfaces to allow input and output to/from the whole system

for external actors (humans or systems). These interfaces are defined on specific components

as shown in the following table:

Table 17 – C3ISP external end-to-end interfaces

Source Destination Components interacting

Prosumer ISI
ProsumerISI API

User interface (or an application on behalf of it) uses ISI API to

share its data

Consumer IAI
ConsumerIAI API

User interface (or an application on behalf of it) uses IAI API to

execute analytics jobs on data shared through the ISI

Prosumer
DSA

Manager

ProsumerDSA Editor

User Interface uses services exposed by the DSA Editor to author

DSAs

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 26 of 104

The communication between the C3ISP subsystems happens through well-specified points,

as described in the following table (arrows indicate the direction where the communication

starts):

Table 18 – C3ISP communication between subsystems (component[::module] notation used)

Source Destination Components interacting [::Module]

ISI
DSA

Manager

DSA Adapter::Bundle Manager → DSA Editor::DSA Manager

Gateway

ISI uses DSA Manager Gateway to retrieve a DSA and its

characteristics.

ISI CSS
DSA Adapter::Bundle Manager → Key & Encryption Manager

ISI uses the K&EM for encrypted operations on CTI data (bundle)

ISI CSS

DSA Adapter::CAE/OE → Identity Manager

CAE and OE connects to the IDM to retrieve attributes for policy

evaluation

IAI ISI

IAI API → ISI API

IAI requests shared data for analytics processing and for data

preparation in “data lakes”

In addition, each module/component of the three subsystems (ISI, IAI, DSA Manager) will

trace its respective activities, for auditing purpose, to Secure Audit Manager (part of the CSS

subsystem). Identity Manager is used by DSA Editor for user login and will be used for other

internal authentication necessities, as well.

The communication interfaces between the ISI components can be summarised as follows:

Table 19 – ISI Subsystem: internal component[::module] communication

Components interacting Description

ISI API → DSA Adapter::DSA Adapter Front End

Single communication entry

point for using the DSA Adapter

functionalities

DSA Adapter::Event Handler → Bundle Manager

Used for publish-subscribe of

events related to the C3ISP

bundle

DSA Adapter::Bundle Manager → Event Handler

Used for publish-subscribe of

events related to the C3ISP

bundle

DSA Adapter::Continuous Auth Engine → Event Handler

Used for publish-subscribe of

events related to policy

evaluation (usage control)

DSA Adapter::Event Handler → Continuous Auth Engine

Used for publish-subscribe of

events related to policy

enforcement (usage control)

DSA Adapter::Event Handler → DMO Engine

Used for publish-subscribe of

events related to the execution of

DMOs

DSA Adapter::Event Handler → Obligation Engine

Used for publish-subscribe of

events related to obligation

enforcement

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 27 of 104

DSA Adapter::DSA Adapter Front End → Event Handler

Kicks off the internal DSA

Adapter workflow by publishing

events to the Event Handler

DSA Adapter::Bundle Manager → DPOS API
Performs create/read/delete

operation about C3ISP bundles

ISI API → Format Adapter
Requests CTI data format

adaptation changes, if necessary

ISI API → Buffer Manager

Asks to prepare the data (and

corresponding data lake) for

analytics function execution

Buffer Manager → Format Adapter

Asks to update the CTI data

format in such a way that the

analytics service will be able to

use it

The communication interfaces between the IAI components can be summarised as follows:

Table 20 – IAI Subsystem: internal components communication

Components interacting Description

IAI API → Service Usage Control Adapter

IAI API checks whether the

analytics it wants to run is

authorised or not

Service Usage Control Adapter → C3ISP Analytics Engine
Mediates the access to the

analytics services

Legacy Analytics Engine → Virtual Data Lake

Accesses the temporary virtual

data lake where CTI data is

stored for analysis

IAI API → Legacy Analytics Engine
Mediates access to the legacy

services

IAI API → Virtual Data Lake

Allows accessing the VDL to

setup it and properly format its

content (thanks to interaction

with Buffer Manager and

Format Adapter)

Virtual Data Lake → IAI API

Allows accessing the VDL to

setup it and properly format its

content (thanks to interaction

with Buffer Manager and

Format Adapter)

The communication interfaces between the DSA Manager components can be summarized

as follows:

Table 21 – DSA Manager Subsystem: internal components communication

Components interacting Description

DSA Editor → DSA Mapper

Invokes the mapping services of the DSA from

CNL language to UPOL language, to be ready to

be enforced by the DSA Adapter component

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 28 of 104

DSA Editor → DSA Manager Gateway

Asks for services to persist DSA via the DSA Store

API, by allowing advanced DSA management

(e.g. DSA status check/change, etc.); keeps and

manages the role-based access control settings for

users accessing the DSA Editor

DSA Mapper → DSA Manager Gateway
Asks for services to persist DSA after mapping

with the correct DSA state

DSA Manager Gateway → DSA Store API Sends CRUD requests to stored DSA

DSA Store API → DSA Store Simple CRUD interface towards the DSA Store

The communication interfaces between the CSS components can be summarized as follows:

Table 22 – CSS Subsystem: internal components communication

Components interacting Description

Identity Manager → Secure Audit

Manager
Traces Identity Manager activity

Key & Encryption Manager → Secure

Audit Manager
Traces K&E Manager activity

Key & Encryption Manager → Identity

Manager

Validates received requests based on the calling

identity (requestor)

Secure Audit Manager → Identity

Manager

Validates received logging requests based on the

calling identity (requestor). Audit trails should

come from authorised sources.

All the described communication flows are crucial to evaluate the correctness of the C3ISP

Framework internal interactions and are used to perform the required integration testing

activities.

4.2.2. Integration step 2 – Agreement about the responsibilities

A crucial step for a successful integration process is the agreement of the responsibilities for

the definition, implementation and integration of the communication interfaces.

Roles and responsibilities of C3ISP partners for interface definition and integration, as

enumerated in Step 1 (see tables in Section 4.2.1), have been agreed during conference call

meetings and are reported in the following “RACI” matrixes (Table 24, Table 25, Table 26,

Table 27, Table 28 and Table 29). The roles of each partner with respect to each communication

interface are indicated in the next tables using abbreviations.

Table 23 – RACI acronyms definition

Acronym Description

R Responsible to perform the task (who does the work).

A Accountable for the successful task completion.

C Consulted before and during task execution.

I Informed about task completion.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 29 of 104

Table 24 – RACI matrix for communication with C3ISP (external interfaces)

Interaction

C
N

R

IS
C

O
M

-M
IS

E

H
P

E

B
T

S
A

P

C
E

A

D
IG

IC
A

T

U
N

IK
E

N
T

G
P

S

C
H

IN
O

3
D

 R
E

P
O

ProsumerISI API A I C C R I I C C C C

ConsumerIAI API A, R I C C C I I C C C C

ProsumerDSA Editor C I A, R I C C I C I I I

Table 25 – RACI matrix for communication between C3ISP subsystems

Source Destination

Components

interacting

[::Module] C
N

R

IS
C

O
M

-M
IS

E

H
P

E

B
T

S
A

P

C
E

A

D
IG

IC
A

T

U
N

IK
E

N
T

G
P

S

C
H

IN
O

3
D

 R
E

P
O

ISI
DSA

Manager

DSA

Adapter::Bundle

Manager → DSA

Editor::DSA

Manager Gateway

C I C I C R I A I I I

ISI CSS

DSA

Adapter::Bundle

Manager → Key &

Encryption Manager

R I C I C A I I I I I

ISI CSS
DSA Adapter::CAE

→ Identity Manager
R,

A
I C I C I I I I I I

ISI CSS
DSA Adapter::OE →

Identity Manager
A I C I R I I I I I I

IAI ISI IAI API → ISI API A I C I C I I I I R I

Table 26 – RACI matrix for communication internal to the ISI Subsystem

Components interacting

C
N

R

IS
C

O
M

-M
IS

E

H
P

E

B
T

S
A

P

C
E

A

D
IG

IC
A

T

U
N

IK
E

N
T

G
P

S

C
H

IN
O

3
D

 R
E

P
O

ISI API → DSA Adapter::DSA Adapter

Front End
A I C I R I I I I I I

DSA Adapter::Event Handler → Bundle

Manager
C I C I R A I I I I I

DSA Adapter::Bundle Manager → Event

Handler
C I C I A R I I I I I

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 30 of 104

DSA Adapter::Continuous Auth Engine →

Event Handler
R I C I A C I I I I I

DSA Adapter::Event Handler →

Continuous Auth Engine
A I C I R C I I I I I

DSA Adapter::Event Handler → DMO

Engine
C I C I

R,

A
C I I I I I

DSA Adapter::Event Handler →

Obligation Engine
C I C I

R,

A
C I I I I I

DSA Adapter::DSA Adapter Front End →

Event Handler
R I C I A C I I I I I

DSA Adapter::Bundle Manager → DPOS

API
C I C I C R I A I I I

ISI API → Format Adapter C I C I R I I I A I I

ISI API → Buffer Manager C I C I R I I I I A I

Buffer Manager → Format Adapter C I C I C I I I A R I

Table 27 – RACI matrix for communication internal to the IAI Subsystem

Components interacting

C
N

R

IS
C

O
M

-M
IS

E

H
P

E

B
T

S
A

P

C
E

A

D
IG

IC
A

T

U
N

IK
E

N
T

G
P

S

C
H

IN
O

3
D

 R
E

P
O

IAI API → Service Usage Control

Adapter
R,

A
I C I I I I I I I I

Service Usage Control Adapter → C3ISP

Analytics Engine
R,

A
I C I I C I I I I C

Legacy Analytics Engine → Virtual Data

Lake
C I C

R,

A
I I I I I I I

IAI API → Legacy Analytics Engine R I C A I I I I I I I

IAI API → Virtual Data Lake R I C A I I I I I I I

Virtual Data Lake → IAI API R I C A I I I I I I I

Table 28 – RACI matrix for communication internal to the DSA Manager Subsystem

Components interacting

C
N

R

IS
C

O
M

-M
IS

E

H
P

E

B
T

S
A

P

C
E

A

D
IG

IC
A

T

U
N

IK
E

N
T

G
P

S

C
H

IN
O

3
D

 R
E

P
O

DSA Editor → DSA Mapper A I R I I I I C I I I

DSA Editor → DSA Manager Gateway C I
R,

A
I I I I C I I I

DSA Mapper → DSA Manager Gateway R I A I I I I C I I I

DSA Manager Gateway → DSA Store API C I R I I I I A I I I

DSA Store API → DSA Store C I A I I I I R I I I

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 31 of 104

Table 29 – RACI matrix for communication internal to the CSS Subsystem

Components interacting

C
N

R

IS
C

O
M

-M
IS

E

H
P

E

B
T

S
A

P

C
E

A

D
IG

IC
A

T

U
N

IK
E

N
T

G
P

S

C
H

IN
O

3
D

 R
E

P
O

Identity Manager → Secure Audit Manager R I A I I I I C I I I

Key & Encryption Manager → Secure Audit

Manager
C I A I I R I C I I I

Key & Encryption Manager → Identity

Manager
A I C I I R I C I I I

Secure Audit Manager → Identity Manager A I R I I I I C I I I

4.2.3. Integration step 3 – Definition of the communication interfaces

A clear and detailed definition of the communication interface is required to have a smooth

integration and to avoid rework.

Under WP7 supervision and proactive proposals, the responsible partners have refined or

suggested the details for the implementation of the communication interfaces.

The fundamental interfaces have been described in D7.2 (First Version of C3ISP Architecture)

From a technical standpoint, whenever feasible, we chose to use the RESTful [1] web service

paradigm for the communication interface. This is a lightweight and simple yet effective way

to provide and consume web services.

The table below summarises the technical mechanism used for each communication:

Table 30 – List of interfaces and technical mechanisms

Interface Technical mechanism Documentation

ProsumerISI API RESTful web services 5.6.2

ConsumerIAI API RESTful web services 6.5.2

ProsumerDSA Editor Web browser (https) 7.1

DSA Adapter::Bundle Manager → DSA

Editor::DSA Manager Gateway
RESTful web services 7.4.2

DSA Adapter::Bundle Manager → Key &

Encryption Manager
RESTful web services 8.2.2.1

DSA Adapter::CAE → Identity Manager LDAP RFC 45119

DSA Adapter::OE → Identity Manager LDAP RFC 4511

IAI API → ISI API RESTful web services 5.6.2

ISI API → DSA Adapter::DSA Adapter Front

End
RESTful web services 5.1.1.2

DSA Adapter::Event Handler → Bundle Manager RESTful web services 5.1.6.2

DSA Adapter::Bundle Manager → Event Handler RESTful web services 5.1.2.1

9 Lightweight Directory Access Protocol (LDAP): The Protocol – https://tools.ietf.org/html/rfc4511

https://tools.ietf.org/html/rfc4511

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 32 of 104

DSA Adapter::Continuous Auth Engine → Event

Handler
RESTful web services 5.1.2.1

DSA Adapter::Event Handler → Continuous

Auth Engine
RESTful web services 5.1.3.2

DSA Adapter::Event Handler → DMO Engine RESTful web services 5.1.5.2

DSA Adapter::Event Handler → Obligation

Engine
RESTful web services 5.1.4.2

DSA Adapter::DSA Adapter Front End → Event

Handler
RESTful web services 5.1.2.1

DSA Adapter::Bundle Manager → DPOS API RESTful web services 5.4.2

ISI API → Format Adapter RESTful web services 5.2.2

ISI API → Buffer Manager RESTful web services 5.3.2

Buffer Manager → Format Adapter RESTful web services 5.2.2

IAI API → Service Usage Control Adapter RESTful web services 6.2.1

Service Usage Control Adapter → C3ISP

Analytics Engine
RESTful web services 6.1.3.1

Legacy Analytics Engine → Virtual Data Lake LDAP/MySQL/HDFS

RFC 4511 /

JDBC API 10 /

HDFS API11

IAI API → Legacy Analytics Engine
RESTful web services

Web browser redirects (https)
6.3

IAI API → Virtual Data Lake MySQL/HDFS
JDBC API /

HDFS API

Virtual Data Lake → IAI API MySQL/HDFS
JDBC API /

HDFS API

DSA Editor → DSA Mapper RESTful web services 7.2.2

DSA Editor → DSA Manager Gateway RESTful web services 7.4.2

DSA Mapper → DSA Manager Gateway RESTful web services 7.4.2

DSA Manager Gateway → DSA Store API RESTful web services 7.3.2

DSA Store API → DSA Store RESTful web services HDFS API

Identity Manager → Secure Audit Manager RESTful web services 8.3.1

Key & Encryption Manager → Secure Audit

Manager
RESTful web services 8.3.1

Key & Encryption Manager → Identity Manager LDAP RFC 4511

Secure Audit Manager → Identity Manager LDAP RFC 4511

4.2.4. Integration step 4 – Setup of the integration environment

The physical architecture of the C3ISP environment was described in D7.2 and now it has been

updated in Section 10. The rationale behind that is the need to have a complete end-to-end

integration test-bed as much as possible hosted in a single central environment, in order to

facilitate the integration activities and the testing cycle. However, not all the components can

10 Java JDBC AIP - https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

11 Apache Hadoop Main API – https://hadoop.apache.org/docs/r3.0.0/api/index.html

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://hadoop.apache.org/docs/r3.0.0/api/index.html

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 33 of 104

run centrally. For example, depending on the C3ISP deployment model, ISI could run locally

at Pilot premises (i.e. the hybrid model); in particular, for the sake of simplification, at this

stage, we hosted also the on-premises part of the Pilots, including the local ISI deployment, for

those that are using the C3ISP hybrid deployment model.

The integration environment aims at delivering the implementation of the C3ISP reference

architecture conceived in WP7 and has the following logical roles:

 The C3ISP subsystems:

o Information Sharing Infrastructure – ISI

o Information Analytics Infrastructure – IAI

o DSA Manager

o Common Security Services – CSS (in particular K&E Manager is considered

internal to the C3ISP Framework)

 External services: Anonymization Toolbox, FHE, CSS (Identity Manager and Secure

Audit Manager are considered external off-the-shelf components)

 The four Pilots results: ISP, CERT, Enterprise, SME.

The environment is made mostly of virtual machines, so it is easy to reconfigure it in case it

would be necessary for changing the allocation resources or cloning C3ISP artefacts to avoid

bottlenecks in the testing activities. Only IAI runs on physical hardware, due to the high

computational resources required by the (big data) analytics and by the homomorphic

encryption.

The following table shows where each subsystem runs on which virtual machine:

Table 31 – C3ISP artefacts and corresponding machine

Roles Artefact Host

C3ISP Subsystems

ISI Subsystem isic3isp.iit.cnr.it

IAI Subsystem iaic3isp.iit.cnr.it

DSA Manager Subsystem dsamgrc3isp.iit.cnr.it

CSS Subsystem: Identity Manager (LDAP) devc3isp.iit.cnr.it

CSS Subsystem: Key Encryption kec3isp.iit.cnr.it

CSS Subsystem: Secure Audit Manager <not yet implemented>

C3ISP Pilots

ISP Pilot ispc3isp.iit.cnr.it

CERT Pilot 90.147.82.10

Enterprise Pilot entc3isp.iit.cnr.it

SME Pilot smec3isp.iit.cnr.it

4.2.5. Integration step 5 – Point-to-point integration tests

The process of obtaining a working solution that delivers the planned functionalities requires

several testing steps. The first step is to carry out point-to-point integration tests to verify each

single communication interface. There are 35 interfaces as listed in Table 30 (4.2.3): these are

also the number of point-to-point integration test suites needed (i.e. a set of tests for each

interface).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 34 of 104

In order to speed up integration and testing activities, and to proceed with testing even if

components have not fully developed, we agreed to make use of some API mock services.

Swagger [1] is an open source solution that allows defining RESTful interfaces and

automatically generates their documentation (in HTML format) together with the possibility of

building requests for testing purposes (by using Swagger UI [3]). The generation of the HTML

documentation and testing GUI is based on a YAML [5] file that has a specific Swagger syntax

describing the interfaces exposed by the RESTful web service.

The figure below shows a sample of HTML documentation and testing GUI generated for the

DPOS API component, with signature for input parameters and output values:

Figure 8: Auto generated documentation and testing GUI for a RESTful web service (Swagger UI). The

“Try it out!” button allows generating a test web service request and checks the results.

The Swagger YAML file can be generated in several ways: automatically by using specific

plugins, like SpringFox [6], that scan the application code in order to find interfaces definitions

(i.e. described by Spring Boot [7] or JAX-RS [8] specific annotation), or through an Internet

free portal service (called Swagger Editor [4]). Most of the C3ISP components’ source code

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 35 of 104

uses Spring Boot to create RESTful web services, which are tagged with specific SpringFox

java annotations to allow building the YAML specification (see Figure 9).

Figure 9: Spring Boot Java code annotated with SpringFox (on the top) and its translation to YAML (on

the bottom). Java annotation code starts with the @ character.

Having a Swagger UI that describes all the available API signatures and documentation, as well

as that provides the capability to issue web services test requests, allows the setup of mock

services. In fact, we first agreed on the list of API and their input/output parameters and built a

service always returning fixed results: this allows proceeding in parallel to implement a

workflow and not be blocked by waiting a component to be finished. Once the component

mature and reaches stability12, we replaces the fixed values with the real business logic.

12 Every interface has a list of test cases prepared by the RACI responsible partner (R), who is also the partner

responsible for executing the integration tests. Component stability is reached when at least one of the exposed

YAML generation

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 36 of 104

4.2.6. Integration step 6 – Multi-point integration tests

Testing the single point-to-point communication is not enough to have a working system.

Components talks to each other in the context of the subsystem where they run (see Table 19 –

ISI Subsystem: internal component[::module] communication, Table 20 – IAI Subsystem:

internal components communication, Table 21 – DSA Manager Subsystem: internal

components communication, Table 22 – CSS Subsystem: internal components

communication), while subsystems interacts between them and with systems outside its

perimeter via well-defined junction points (see Table 18 – C3ISP communication between

subsystems). Multi-point integration tests require to develop an integration test plan that builds

on already tested point-to-point interfaces, by adding incrementally a component after the other

to define the full communication chain up to the complete testing of the end-to-end scenario.

In particular, multi-point integration tests start inside each subsystem (ISI, IAI, DSA Manager,

CSS), then expand to the interaction between them and with the external systems (e.g. IDM).

For example, let us consider the DSA Manager subsystem: in order to test the interaction

between the DSA Editor (DSAED) and the DSA Store (DSASTO), it is necessary that the point-

to-point communications DSAEDDSAMG, DSAMGDSASTOAPI and

DSASTOAPIDSASTO already work. Once we have tested those communications, we can

proceed to expand the chain to include all of them to fully test the whole end-to-end scenario:

DSAEDDSAMGDSASTOAPIDSASTO.

In this way, we create a test plan that enables us to incrementally test the interaction of the

components by combining the point-to-point integration tests. The table below lists some of the

incremental tests currently undergoing:

Table 32 – Multi-point integration sample testing scenarios

Components interacting Description

1. Ext → ISI API → Format Adapter → DSA

Adapter → DSA Manager → Key & Encryption

Manager → DPOS API → DPOS

2. ISI API → DSA Adapter Front End → Event

Handler → Bundle Manager → DSA Manager

(DSA Manager Gateway)

1. Create DPO: a Producer asks to

Create a DPO giving {metadata, CTI}.

ISI normalizes CTI (Format Adapter), is

authorised to create a DPO (DSA

Adapter::Engines), creates the DPO-Id

(DSA Adapter::DSA Adapter Front

End), creates the bundle with DSA

(DSA Adapter::Bundle Manager) by

fetching DSA in UPOL format, encrypts

CTI with a specific key, creates DPO

that contains the CTI (with metadata)

and the DSA (DSA Adapter::Bundle

Manager), finally returns to the Ext

(caller).

2. Fetch the right DSA/UPOL to be

used: this is another relevant multi-point

integration tests, which, even if it is

included in 1, it is worth testing as

standalone scenario.

See workflow in Section 9.1.

API methods passes the internal integration test cases list: this would be better called “partial stability”, but our

mock services approach allows us to have method-granularity control and replace a single mock method at a time.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 37 of 104

Ext → ISI API → DSA Adapter → DPOS API →

DPOS

Read DPO: a Producer asks to read a

DPO. DSA Adapter checks policy

evaluation and enforces (e.g. apply

DMOs) the applicable DSA policy.

See workflow in Section 9.2.

Ext → ISI API → DSA Adapter → DPOS API →

DPOS

Delete DPO: ISI checks policy and

removes DPO from DPOS.

See workflow in Section 9.3.

1. Ext → ISI API → Buffer Manager

2. Buffer Manager → C3ISP Analytics Engine →

ISI API → DSA Adapter

3. ISI API → Buffer Manager → ISI API → DSA

Adapter → Virtual Data Lake(VDL)/Data Lake

Buffer(DLB) → Format Adapter

Run Analytics: Prosumer runs

Analytics Service giving as input

{metadata, analytics service name,

analytics service parameters, DPO

search criteria}.

Due to the complexity of the involved

workflow, we split into many multi-

point integration tests:

1. Creation of the data lake (VDL/DLB)

considering Buffer Manager as a black

box;

2. Execution of the analytics service and

store of the result into C3ISP;

3. Creation of the data lake (VDL/DLB)

with all the involved chain of

components.

See workflow in Section 9.4.

4.2.7. Integration step 7 – Final system scenarios tests

The last step is the testing of end-to-end realistic scenarios that evaluates input/output

considering a black-box system. The entry points to the system are described in Table 17 –

C3ISP external end-to-end interfaces. This activity leverages on the experience gained from the

whole integration process testing so far. In particular, activities from Step 6 of the methodology

can be combined to create system end-to-end test cases, by using real data and applications. In

fact, Pilots can take advantage on the experience made to both perform testing activities and to

spot quickly issues by isolating the affected components.

Please refer to Pilot Product deliverables (D2.3, D3.3, D4.3, D5.3) for further information on

the Pilots end-to-end scenarios.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 38 of 104

5. Subsystem Updates & Status: ISI – Information Sharing

Infrastructure
The Information Sharing Infrastructure (ISI) allows Prosumers to exchange CTI data under the

constraints specified in the DSA policies and acts as a storage of CTI data for access by analytics

services in a controlled manner.

This section reports on the revised ISI that has been developed at M24 and deployed into the

C3ISP Test Bed.

The ISI is made up of the following components, described in detail in the next sections:

 DSA Adapter: to enforce the rules written in the DSAs;

 Buffer Manager: to create a temporary data lake used by the analytics;

 Format Adapter: to accommodate for different necessities of data format and

conversion;

 Data Protected Object Store (DPOS) and DPOS API: to securely persist the

protected CTI data on a storage area for further sharing and processing;

 ISI API: to manage the external communication with the others C3ISP subsystems

and users.

Figure 10: Information Sharing Infrastructure

The ISI interacts with external clients:

 The Producer (or an application on behalf of it), which would use the ISI API to

share its data;

 The DSA Manager, for retrieving and evaluating the DSA used to protect the data;

 The Information Analytics Infrastructure (IAI) that will request shared data for

analytics processing;

 The Common Security Services (CSS) for secure auditing of its activities, for

identity management and for key and encryption services.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 39 of 104

5.1. DSA Adapter

The DSA Adapter is the component of the C3ISP architecture which is in charge of evaluating

the DSA paired with the CTI data and of enforcing it when the execution of some operation on

the data is requested (e.g. read).

Figure 11 shows the modules of the DSA Adapter at month 12:

Figure 11: Components of the DSA Adapter at month 12

As shown in Figure 12, the diagram has been updated by moving the Bundle Manager to interact

with the Event Handler, in such a way that now the Event Handler coordinates the main DSA

Adapter modules in the same way, making the architecture cleaner and easier to be

implemented:

Figure 12: Components of the DSA Adapter at month 24

The new diagram shows also better the interaction with the ISI and CSS components. In fact,

both the Continuous Authorization Engine and the Obligation Engine require attributes for

policy evaluation from the Identity Manager, while the Bundle Manager selects the DSA from

the DSA Manager and handles the encryption of the CTI data.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 40 of 104

The following subsections describe the status of implementation for this First Version of the

C3ISP platform (M24).

5.1.1. DSA Adapter Front End

The DSA Adapter Front End is the entry point of the DSA Adapter. It is in charge of exposing

the component’s public API consumed by the ISI API and of starting/tracking the business

processes of the DSA Adapter needed to fulfil external requests.

Its architecture consists of:

 A module that contains the implementation of the exposed API;

 A module that communicates with the Event Handler and by means of the latter,

with all other DSA Adapter components.

Any updates to the API will only occur provided they do not impact the architecture of the DSA

Adapter Front End as shown in Figure 13:

Figure 13: DSA Adapter Front End architecture

5.1.1.1. Implementation and Integration Status

At M24 the DSA Adapter Front End has been developed and is available as a RESTful web

service. It is integrated with the ISI API and is able to interact with the Event Handler and

indirectly with Bundle Manager and the Continuous Authorization and Obligation Engines.

The major goal for the final prototype is to fully support all functionalities exposed by the ISI

API, avoiding any further architectural modification and with minimal (if any) updates to the

exposed API. Improvements in the Move DPO functionality may be required and thus

implemented.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 41 of 104

5.1.1.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DSA Adapter Front End:

Figure 14: DSA Adapter Front End API from Swagger UI

5.1.2. Event Handler

The Event Handler is a component in charge of dispatching messages (events) to the DSA

Adapter components. It implements a publish-subscribe message passing pattern.

At each start-up, the Event Handler requires other DSA Adapter components to register

themselves to their messages of interests. It is designed to be the first element of DSA Adapter

to be started, thus allowing the registration of other components. If a component faces an issue

at its start-up, it will probably not be able to register to the Event Handler and this lack is easily

detectable.

The Event Handler is also used to notify a message to one or more DSA Adapter components.

When a new message has to be sent, its producer can do so by issuing a request to the Event

Handler. The latter will proceed to notify each components (“push”) on a dedicated interface

that all components need to expose and declare at the moment of the registration. Alternatively,

the Event Handler offers to cache messages if a component prefers a “pull” notification model.

In that case, it is that component’s responsibility to regularly query the Event Handler, that

creates a dedicated message queue.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 42 of 104

Figure 15: Event Handler architecture with interacting DSA Manager’s components

The described architecture is to be considered in its final version, even if refinements to some

of the exposed functionalities may still occur, if it will be deemed necessary.

5.1.2.1. Implementation and Integration Status

At M24 the Event Handler is fully available and its features are complete. No modifications are

expected for the release of the final prototype. DMO Engine, Obligation Engine, Bundle

Manager and Continuous Authorization Engine are integrated with the Event Handler.

5.1.2.1. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the Event Handler:

Figure 16: Event Handler API from Swagger UI

5.1.3. Continuous Authorization Engine

The Continuous Authorization Engine is the component of the ISI subsystem which is in

charge of control the usage of CTIs, i.e., it is the component responsible of checking the usage

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 43 of 104

control policy paired with the CTI both at access request time (as in the traditional access

control model) and continuously while the usage of the CTI is in progress, following the UCON

model [22]. A detailed description of the internal architecture and of the features and

functionality (shown in Figure 17) can be found in Deliverable D8.2.

Figure 17: Internal Architecture of the Continuous Authorisation Engine

5.1.3.1. Implementation and Integration Status

In the following, we report a very brief description of the task of each of the Continuous

Authorization Engine components, and a description of the main changes that have been

performed at M24 to allow its integration within the ISI subsystem in order to perform usage

control on the CTIs exploited in the C3ISP analytics.

In particular, the Continuous Authorization Engine consists of the following modules:

 Multi-Resources Handler (MRH): This component has been introduced as result of

the maturation process of the Continuous Authorization Engine component, in order to

address the C3ISP pilots use cases. As a matter of fact, the original component was able

to deal with access requests concerning one resource only, while in the C3ISP scenario

the access requests concern sets of resources, i.e., the sets of CTIs on which the users

want to execute the C3ISP analytics. Hence, with respect to the original version of the

Continuous Authorization Engine (described in D8.1), the integration within the ISI

subsystem required a modification of the original architecture, i.e., the introduction of

this new component called Multi-Resources Handler, which intermediates the

interactions between the Event Handler and the original Context Handler (CH). This

component is in charge of exposing the new interface accepting multi resources access

requests and of extending the workflow of the policy evaluation process to

accommodate the evaluation of access requests involving multiple CTIs. In particular,

this component interacts with the Event Handler accepting access requests involving

multiple CTIs, perform a loop cycle to ask to the original Usage Control systems to

evaluate the usage control policy of each of them (i.e., interacting with the original CH

exploiting the original protocol), collects all the responses, and interact with the

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 44 of 104

Decision Combiner (DC) component to combine such responses in order to define the

maximum set of CTIs for the analytics the be performed.

The MRH exposes the following APIs:

o endAccessResponse: invoked as part of the asynchronous communication

between the Continuous Authorization Engine and the Event Handler. Reports

if the session has been closed correctly with correct execution of the post

obligations;

o eventArrived: API invoked to handle all events received from the event

handler;

o onGoingEvaluation: invoked to check if the policy conditions still hold and

eventually trigger a session revocation;

o startAccessResponse: confirms the execution of all operations related to the

startAccess invocation;

o tryAccessResponse: invoked as part of the asynchronous protocol, reporting

that the actions related to the TryAccess have been performed correctly;

 Decision Combiner (DC): this component has been added as result of the maturation

process of the Continuous Authorization Engine component, in order to address the

C3ISP pilots use cases. In particular, this component is invoked by the Multi-Resource

Handler which sends it the results of the decision processes performed on each CTI of

a given request. The main task of this component is to determine the set of CTIs on

which the analytics will be executed in such a way that the policies of all these CTIs are

respected and an objective function is maximized. A simple example of objective

function to be maximized could be the number of CTI involved in the analytics. At M24

a very simple objective function is provided. Please refer to deliverable D8.2 for further

details;

 Multi Session Manager (MSM): this component has been added as result of the

maturation process of the Continuous Authorization Engine component, in order to

address the C3ISP pilots use cases. The main task of this component is to keep track of

a set of data to connect the usage session of each single CTI (which is managed by the

original SM) with the multi resource access request it belongs to;

 Context Handler (CH): is the original entry point of the Continuous Authorization

Engine component, and it coordinates the internal modules for the execution of the

policy evaluation process. Due to the maturation process, this component now manages

communication protocol for interacting with the MRC, using a subset of the usage

control actions: tryaccess, permitaccess, denyaccess, revokeaccess, and endaccess.

Moreover, new signatures have been added for the tryaccess, and endaccess interface

in order to pass additional information required for the management of the multi

resource access requests. The CH offers the following APIs:

o EndAccess: invoked when a resource is released. It removes all records of the

ended session and triggers post obligations;

o EndAccessResponse: invoked as part of the asynchronous communication

between the CH and MRH. Reports if the session has been closed correctly with

correct execution of the post obligations;

o OnGoing: used when the Continuous Authorization Engine is distributed. It

sends remotely an evaluation request, to be evaluated by a remote instance of

the Continuous Authorization Engine;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 45 of 104

o OnGoingResponse: sends the evaluation results for a request which has been

computed remotely;

o RetrieveRemote: invoked when there are multiple instances of the DSA

Adapter and a request should be handled by a Continuous Authorization Engine

which is remote with respect to the calling Event Handler;

o RetrieveRemoteResponse: invoked from the remote DSA Adapter as response

to a RetrieveRemote invocation;

o startAccess: invoked by the MRH when the access to a resource is actually

started. Triggers evaluation of the ongoing policy;

o startAccessResponse: confirms the execution of all operations related to the

startAccess invocation;

o tryAccess: invoked by the MRH to ask the right to access a resource. Triggers

policy vs request evaluation;

o tryAccessResponse: invoked as part of the asynchronous protocol, reporting

that the actions related to the TryAccess have been performed correctly;

 Session Manager (SM): is the components responsible for keeping track of the accesses

that are currently in progress, in order to allow the continuous authorization phase;

 Policy Decision Point (PDP) is the component which evaluates security policies and

produces the access decision. No modifications with respect to the original version of

this components have been done;

 Attribute Managers (Ams) are the modules which manage the attributes required to

evaluate the usage control policies. Each AM provides a custom interface to retrieve

(and to update) the current values of the attributes it manages. The M24 version of the

C3ISP framework integrates the following Ams:

o Identity Manager: the Common Security Services subcomponent of the C3ISP

framework offers an Identity Manager service which, in turns, provides a LDAP

service. This service provides information about the C3ISP users, such as the

organization they work for, the projects they are involved in, and so on. This

information are exploited in the usage control policies to define the usage rights

on the CTIs, and hence they must be retrieved in order to enforce such policies

and make usage decisions concerning CTIs;

o MySQL: the MySQL is a generic attribute manager suitable to be used by a

large set of policies. The database can contain, for example metadata related to

stored data, such as number of accesses, size, owner, etc., or related to entities

accessing data. Attributes stored in MySQL database can be mutable, hence for

these attributes it is necessary to implement PIPs able to periodically query these

mutable attributes;

 Policy Information Points (PIPs) are interfaces for interacting with Attribute Managers

in order to perform the main operations on attributes: retrieve, subscribe/unsubscribe

and update. We developed the following PIPs in order to interact with the Ams listed in

the previous point:

o LDAP: the LDAP PIP is exploited to retrieve user attributes which are stored

inside the Identity Manager. As discussed, the Identity Manager is implemented

through an LDAP service to store basic information related to users (prosumers)

willing to access or publish data stored in the DPOS. This PIP is in charge of

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 46 of 104

retrieving user attributes such as department, role, mail, etc. The PIP is highly

customizable in order to deal with different structures of LDAP Identity

Managers and to retrieve only attributes required by the policy;

o MYSQL: the MySQL PIP is dual to the formerly defined Attribute Manager.

The MySQL PIP is designed to be general and easily adapt to any database

defined with the MySQL software. The PIP exploits the Hibernate13 framework

to interface the Java code of the PIP itself with the database. The PIP is

completely configurable via a configuration file, where the system administrator

specifies username and password for the AM database, table(s) structure and

format of the attributes.

5.1.3.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the Continuous Authorization Engine:

Figure 18: Continuous Authorization Engine API from Swagger UI

This is the ones for the Multi Resource Handler:

Figure 19: Multi Resource Handler API from Swagger UI

5.1.4. Obligation Engine

The Obligation Engine is a module that is responsible for the execution of specific operations

when certain conditions take place. Such operations are Usage Control Obligations that are

prescribed by the security policy (i.e. the sticky policy) associated to a specific data.

13 http://hibernate.org/

http://hibernate.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 47 of 104

Its architecture is not dramatically changed from that described in Deliverable D7.2 and

depicted as follows. The only notable modification is the role of the private (internal) Event

Handler instance, now with a mediator role assigned for all Obligation Engine modules. Also,

the set of triggers and actions, regulated respectively by the Trigger and Action Engine have

been explicitly represented. Both engines have methods to register new managed elements and

to invoke them if requested to do so by the Obligation Engine Front End.

Figure 20: Obligation Engine architecture

Architecture Harmonisation with DMO Engine and WP4 Gateway’s Orchestrator

In an effort to consolidate and simplify component design, development and evolution, three

components and namely the Obligation Engine, the DMO Engine and the WP4 Gateway’s

Orchestrator (described in Deliverable D4.3) have been scrutinized. It emerged that the core

functionalities of the Obligation Engine could be used as the foundation for the other two,

organising the development of the components in way similar to a software product line. The

respective sections of these components detail further the application of this concept.

5.1.4.1. Implementation and Integration Status

At M24 the Obligation Engine is implemented in its main components and it has been updated

to meet M24 milestone. A number of new Actions (e.g. all the DMOs related to the

Anonymization Toolbox, see D8.3) and Triggers (e.g. TriggerNewAnalyticsResultReady, see

D8.2) have been added and more will be, in order to fully support all use cases exposed by the

C3ISP pilots.

The described architecture is to be considered in its final version, even if refinements to some

of the exposed functionalities may still occur, and notably with respect to supported actions and

triggers, if it will be deemed necessary.

The major goal for the final prototype is to implement all needed triggers and actions; no

updates are foreseen with respect to architecture and design.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 48 of 104

5.1.4.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the Obligation Engine (in the screenshot, “ObligationInterface” as

part of the Trigger Engine):

Figure 21: Obligation Engine API from Swagger UI

5.1.5. DMO Engine

The Data Manipulation Operation (DMO) Engine is the component in charge of executing

the Data Manipulation Operation returned as a result of the decision process on the data and/or

by any obligation as prescribed by the DSA. In fact, besides determining whether the data can

be accessed or not by the requestor, the decision process also determines a set of operations that

must be executed on such data before being released to the requestor. As an example, a DSA

paired to a system log could require that all the IP addresses present in such log must be

anonymized before releasing this log to a third party. A similar action may be mandated also in

case a retention period for the log is expired, irrespective of any access request. The DMO

Engine is the component of the DSA Adapter devoted to perform such anonymization operation

on the log (i.e. by interacting with the external Anonymization Toolbox service, see D8.2).

Architecture Harmonisation with Obligation Engine and WP4 Gateway’s Orchestrator

The architecture of the DMO Engine has been refactored, in an effort to streamline the design

of the 3 similar C3ISP components (Obligation Engine, DMO Engine and Orchestrator in WP4

Gateway, see deliverable D4.3 for the latter) and to move towards approaches resembling those

studied for the software product lines [9].

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 49 of 104

As a result, the architecture of the three components has been harmonized, after having refined

the initial design and use cases. However, the implementation of the three components is

slightly different, where specific functionalities are rendered on top of a common core. The

implementation of each component is detailed in Deliverable D8.2, while its architecture is

depicted as follows.

Figure 22: Data Manipulation Engine architecture

The Obligation Engine components that are used in the DMO Engine are:

 The Event Handler;

 The Action Engine;

 The conceptual foundation of the Front End (even though the exposed API is different);

 The same persistency management component.

The Trigger Engine is not deemed helpful for the DMO Engine. Specific actions are

implemented in order to support the integration with the Anonymization Toolbox (see D8.2)

and the Full Homomorphic Encryption (see Sections 8.2) components.

The described architecture is to be considered in its final version, even if refinements to some

of the exposed functionalities may still occur, and notably with respect to supported actions (e.g.

support for the FHE), if it will be deemed necessary.

5.1.5.1. Implementation and Integration Status

DMO Engine is integrated with the Anonymization Toolbox with respect to a subset of its

functionalities, while for FHE component, integration is expected for M28.

The major goal for the final prototype is to achieve a full and complete integration with the data

manipulation operations.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 50 of 104

5.1.5.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DMO Engine:

Figure 23: DMO Engine API from Swagger UI

5.1.6. Bundle Manager

At M24, the Bundle Manager (BM) aims at creating, deleting and retrieving packets of data

by invoking specific functions in DPOS component (Data Protected Object Store). The DPO

packet is a bundle of four files, in which the cyber-threat information data file first is encrypted

with AES cryptosystem and then sent to DPOS component for storage.

The four files to store are:

1. The cyber-threat information data, called CTI file (or CTI data);

2. The metadata file, which is a description of the packet;

3. The DSA policy file retrieved from the DSA Manager subsystem;

4. The hash (or hash code) for all the previous files, to guarantee data integrity.

The DPO bundles can be retrieved or be deleted via BM API. To complete these actions, the

BM API interacts with the following components:

 Key & Encryption Manager API (part of the CSS subsystem), which permits (a) to

generate, renew, store cryptographic keys and (b) to encrypt, decrypt data;

 DPOS API (part of the ISI subsystem), which is the API of the Data Protected

Object Storage component;

 DSA Manager Gateway (part of the DSA Manager subsystem), which exposes the

API used to retrieve DSA policy (in UPOL representation).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 51 of 104

Figure 24: Bundle Manager architecture

5.1.6.1. Implementation and Integration Status

At M24 the Bundle Manager APIs are stable, up and running.

The interfaces permit:

 To create a bundle, the Bundle Manager has to subscribe for a “bmc” event from

the Event Handler with a POST request. This request should contain the DSA-Id,

the metadata file and the cyber-threat information (CTI) file. If the creation of a new

bundle is successful (i.e. stored in the DPOS), then the result is a DPO identifier

(DPO-Id).

Figure 25: Create a DPO process. The symbol [Files] denotes the data is in encrypted form.

In the bundle data, Metadata file is not encrypted, the DSA policy file is encrypted with

the key identified by the DSA-Id and the CTI file is encrypted with IAI-C3ISP-ID as

the identifier for the key. Note that the identifier IAI-C3ISP-ID is used for analysis

purposes in IAI platform.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 52 of 104

For encrypting the CTI file, we can use two encryption systems. In the case where the

CTI file is used for analytics services that work on data in clear-text, then only AES is

taken into account. On the another hand, if the CTI file is used for FHE analysis, then

some specific fields in the file which contains confidential data (e.g. IPv4 in the case of

FHE analysis) are firstly encrypted with Kreyvium homomorphic-friendly cryptosystem

(see Section 8.2), secondly the CTI file is entirely encrypted with AES (double

encryption).

 To retrieve a DPO, we mostly follow the same steps as those of creating the bundle.

Figure 26: Retrieve a DPO. [Files] denotes an encryption of Files

When the BM receives a “bmr” event from the Event Handler for retrieving a DPO

bundle, the BM proceeds invoking the read DPO function from the DPOS, then decrypts

the CTI file by means of K&E Manager (thanks to the DSA ID stored in the Metadata

file), finally creates a zip file for these four files and sends it back to the Event Handler.

Note that between steps 5 and 6, the API performs a hash check to ensure the integrity

of the data, but the verification of data integrity will be improved in the next version of

C3ISP Framework.

 To delete a DPO. It is fairly straightforward from the point of view of the BM.

When receiving the “bmd” event from the Event Handler, the BM invokes the

corresponding DPOS API for the deletion of the given DPO-Id.

Figure 27: Delete a DPO

The major goal for the final prototype is to integrate the BM with the K&E Manager component

in such a way to prepare FHE encrypted data in advance for FHE analysis later.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 53 of 104

5.1.6.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the Bundle Manager:

Figure 28: Bundle Manager API from Swagger UI

5.2. Format Adapter

The Format Adapter is the component of the C3ISP Framework in charge of the following

functions:

 Convert (/convert API): adapts the format of input CTI data to a standard format

(STIX) to be easily processed by the various C3ISP components. To accomplish this,

the Format Adapter is called by the ISI API;

 Convert for Data Lake (/convertDL API): formats the CTI data appropriately for a

given analytics service before executing it. This is realised when the Buffer Manager

calls the Format Adapter in order to have the data prepared in the right format for the

analytics.

5.2.1. Implementation and Integration Status

At M24 the Format Adapter is implemented as a RESTful web service implemented in NodeJS

deployed in the Information Sharing Infrastructure (ISI).

The integration status of each CTI data can be found in the table below. The table lists the

formats interpreted as input by the Format Adapter, which are converted into STIX when the

data is received by the convert API (convert API is called by the ISI API during the

createDPO):

Table 33 – Released software components for C3ISP Framework at M24

CTI data Integration Status

Monitoring of connections to malicious hosts ✓

Monitoring of Domain Generation Algorithm DNS-request ✓

Email Analysis ✓

Firewall Schema ✓

Anti-Malware Schema ✓

Security Report Sharing ✓

Enterprise Pilot (Intrusion Detection Events, Malware Events,

Network Traffic Events, Web Events)
✕

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 54 of 104

Currently convertDL API simply removes the STIX envelope before: this API is called by

the Buffer Manager when creating the Data Lake where the analytics will run.

The major goals for the final prototype are to make the Format Adapter able to automatically

detect the format on input (CTI data) and translate it into the required standard format. Further,

the convertDL API will require to convert data to specific formats required by the analytics; the

list of this formats include CSV (Comma Separated Value) and CEF (Common Event Format).

5.2.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the Format Adapter:

Figure 29: Format Adapter from Swagger UI

5.3. Buffer Manager

The Buffer Manager is the component of the C3ISP Framework that manages Data Lakes

(buffers). A Data Lake is a component that is used to store data before and after analytics tasks

executed by C3ISP-aware analytics services or Legacy Analytics services. Data Lakes are of

two types: Data Lake Buffer (DLB) and Virtual Data Lake (VDL) that are different in terms

of how they access and read the data. They are transient, meaning that they are created and

reserved only for the execution of a specific analytics service; then, they get removed.

In the current design, the Buffer Manager supports three implementations of Data Lake that

store data in different fashions:

 On a local file system: this is the simplest and mainly used for testing;

 In a MySQL instance: this is used for example by the BT SATURN tool;

 On a distributed file system (i.e. Hadoop File System – HDFS): this is the most

advanced and enables the execution of big data analytics services.

The component is designed and implemented to allow the creation of new Data Lakes (for

different storage types) in the future, would it be necessary. The current Data Lakes support

satisfies the analytics service requirements.

The Buffer Manager implements these functionalities:

 Create instances of a Data Lake, i.e. provide a VDL and a DLB implementation for each

storage type. The return value is a URI that will be used by the analytics services to read

and, optionally, write CTI data (write access is needed by those analytics that stores

their result temporarily);

 Access an instance of a Data Lake using the URI and store data on it;

 Fetch DPOs from the DPOS on the (central) ISI using the ISI API;

 Delete an instance of a Data Lake using the URI.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 55 of 104

5.3.1. Implementation and Integration Status

At M24 the Buffer Manager implements the following features for managing two different

implementations of Data Lake:

 A File System Data Lake that uses a traditional file system to store data for the

Analytics. Data Lakes are created in a dedicated folder on the node the Buffer Manager

is running (e.g. ISI VM). This Data Lake can be exported to other nodes using third

party mechanisms (e.g. NFS). URIs follow this model:

file:///opt/isi/datalakebuffer/<data_lake_name>

Segregation between different <data_lake_names> is performed via regular Unix

filesystem permissions;

 A MySQL Data Lake, built for analytics services that need to read data from a

relational DBMS. This implementation provides a MySQL URL. Credentials are

provided as properties in the URL in order to grant access only to the particular Data

Lake instance:

jdbc:mysql://iaic3isp.iit.cnr.it:3306/<data_lake_name>?usr=<user>&psw

=<password>

Segregation between different <data_lake_names> is done by instantiating different

user accounts per each analytics execution.

The Buffer Manager is implemented via a RESTful web service that provide the following API:

 A prepareData endpoint that creates a Data Lake instance and populates it with data

read from the ISI API. Returns the instance’s URI;

 A prepareEmptyDataLake endpoint that creates an empty Data Lake instance and

returns the URI;

 A populateDataLake endpoint that writes data inside an existing Data Lake. This

function does not read the data from the ISI: it populates the Data Lake with the

content provided with the API call. This API is only used by the DMO Engine

component to safely store DPOs that have not been manipulated yet, protecting them

from unauthorized access;

 A releaseDataLake endpoint that can be used to delete any Data Lake by providing

its URI and the access credentials.

The flow about how to use these API is described in detail in Section 9.4.

The current version of the Buffer Manager is integrated with the ISI API, which are used to

populate the Data Lakes it creates. This is enough to have a working end-to-end workflow for

the execution of analytics services, but it makes some assumptions regarding the data formats.

In fact, the final prototype will also include:

 Integration of the C3ISP Format Adapter component, which will convert data as

required by the different Analytics services;

 A new Data Lake implementation for the Apache Hadoop Distributed File System

(HDFS), with the goal of integrating Hadoop big-data analysis tools into C3ISP

Analytics services.

file:///C:/opt/isi/datalakebuffer/%3cdata_lake_name

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 56 of 104

5.3.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the Buffer Manager:

Figure 30: Buffer Manager from Swagger UI

5.4. Data Protected Object Store API

The Data Protected Object (DPO) Store API is the external interface of the DPO Store, and

it provides functions for managing the storage of DPOs. The DPO Store API is used by the ISI

components to manage the storage of Data Protected objects. It is also indirectly used by the

IAI subsystem to search and retrieve DPOs for use in collaborative analytics, via the ISI API.

The DPOS prototype supports the following functionality:

 CreateDPO: Given a CTI file, and the associated DSA file, hash code and a DPO

metadata header, create a DPO in the DPO Store;

 ReadDPO: Retrieve the four components of a DPO from the DPO Store repository,

given its DPO ID;

 DeleteDPO: Given a DPO ID, delete the corresponding DPO from the repository;

 SearchDPO: Given a JSON-based search string (described in detail in D8.2), query the

DPO metadata repository, and return a set of metadata entries corresponding to the

matching DPOs. This method returns either a set of DPO IDs or a set of full DPO

metadata entries, based on the Boolean longResultFlag parameter.

The main architectural refinement introduced since D7.2 has been the design and

implementation of a search function. To enable this search, the DPO header provided by the

DPOS client at CreateDPO now contains a set of searchable DPO metadata. The query schema

used by SearchDPO allows the DPOS client to search and filter DPOs based on information

contained in their metadata headers.

5.4.1. Implementation and Integration Status

At M24, the prototype is fully functional. In addition to the storage functionality described in

the design phase (see D7.2), the DPOS additionally supports a search feature, which allows

search on a set of metadata fields stored as part of the DPOS. Both the metadata fields and the

query languages use a JSON-based format (see D8.2).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 57 of 104

5.4.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DPOS API:

Figure 31: DPOS API from Swagger UI

5.5. Data Protected Object Store

The Data Protected Object Store (DPOS) persistently stores the CTI data provided by the

Prosumers in the form of the C3ISP data bundle (or DPO – Data Protected Object), i.e. the CTI

data, the corresponding DSA, hash code, and DPO metadata. It functions as the backend to the

DPOS API.

5.5.1. Implementation and Integration Status

The DPO Store has been implemented as two separate repositories: the search backend, and

the storage backend. Both repositories are implemented using in-house software, which

connects the DPOS API (see Section 5.4) to the off-the-shelf products acting as the repositories:

 The search backend uses MongoDB14, a document-oriented NOSQL database. It

stores and searches DPO metadata, thus enabling C3ISP users and applications to

search and filter data-protected objects;

 The storage backend uses Apache Hadoop Distributed File System (HDFS), the

filesystem component of the Apache Hadoop15 suite of open-source data-processing

tools. It is used by the DPO Store purely as a large-scale distributed filesystem, which

stores the remaining three DPO components: the CTI data file, the associated DSA file,

and a hash signature. Additionally, the DPOS can be configured to use the local

filesystem instead of HDFS. This configuration is meant for use in a small-scale

deployment, as in a Local ISI.

The DPOS in-house software connects the DPOS REST API with the search and storage back-

ends. It abstracts the backend implementation from the DPOS API client, and allows the choice

backend options (as in the case of HDFS vs local-filesystem storage implementation),

depending on the needs of the target environment.

The main architectural refinement introduced since D7.2 has been the splitting of the DPOS

into two repositories: the search backend, and the storage backend, to facilitate the search

functionality introduced in the DPOS API.

Furthermore, we have provided two alternative implementations of the storage backend: a

large-scale distributed filesystem, for use within a central ISI deployment, and a lightweight

local-filesystem option, for use in a local ISI deployment, or for testing.

14 https://www.mongodb.com/

15 http://hadoop.apache.org/

https://www.mongodb.com/
http://hadoop.apache.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 58 of 104

5.6. ISI API

The ISI API is the front-end component providing services to the C3ISP actors (Prosumers or

Prosumers applications, or the IAI subsystem). It orchestrates the processing flow with the other

ISI components, interacting with the DSA Adapter or the Format Adapter (see the data flow

diagrams in section 9). All the APIs are actions that are subject to the (DSA) policies associated

to each CTI data object (i.e. to each DPO).

The list of the operations of the ISI API are the one reported in D7.2, but we have renamed

from “Action CTI” to “Action DPO” such as Create DPO, Read DPO, Move DPO, Delete DPO

(Prepare Data is also another available API). This makes clear that we are dealing with Data

Protected Objects (DPO); in fact, the data these functions receive in entry is already a CTI and

using the term DPO is more appropriate and clear. Further there is a new API that is in used to

search for DPOs matching some conditions; this API is a proxy for the search DPO functionality

exposed by DPOS API (see Section 5.4 for its description).

5.6.1. Implementation and Integration Status

At M24 the ISI API is implemented and integrated with the DSA Adapter Front End and with

the DPOS API for what concerns the implementation of the search functionalities.

The major goals for the final prototype are to tighten the integration with the CSS (for example,

with respect to user authentication) with no other expected updates.

5.6.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the ISI API:

Figure 32: ISI API from Swagger UI

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 59 of 104

6. Subsystem Updates & Status: IAI – Information Analytics

Infrastructure
The Information Analytics Infrastructure (IAI) allows Prosumers to request the execution of

analytics services on the data protected and shared by the ISI. It supports both so called C3ISP-

aware analytics services, jobs that can exploit the full capabilities of the C3ISP Framework, and

so called legacy analytics services (i.e. already existent analytics), that can run on the shared

data but have limitations.

This section reports on the revised IAI that has been developed at M24 and deployed into the

C3ISP Test Bed.

The IAI is made up of the following components, described in detail in the next sections:

 C3ISP Analytics Engine: to run data analytics jobs that exploit the full power of the

C3ISP Framework;

 Service Usage Control Adapter: to protect the Prosumers’ usage of the analytics

services;

 Legacy Analytics Engine: to provide the interface for using a legacy analytics

engine;

 Virtual Data Lake: to implement a “transient” or “per-call” data lake used for

analytics processing by the legacy engine;

 IAI API: to provide the interfaces for external interaction with the Prosumers (or

their applications) and other C3ISP subsystems.

Figure 33: Information Analytics Infrastructure

The IAI interacts with external clients:

 the Consumer (or an application on behalf of it), which would use the IAI API to

execute analytics jobs on the data shared through the ISI;

 the Information Sharing Infrastructure (ISI) to request the data for processing,

subject to DSA policies;

 the Common Security Services (CSS) for secure auditing of its activities and for

identity management.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 60 of 104

6.1. C3ISP Analytics Engine

The C3ISP Analytics Engine is a set of methods and tools offered by the C3ISP Framework

to extract additional knowledge from information shared by Prosumers. The offered analysis

tools include computational intelligence functions, in particular clustering and classification

algorithms, data aggregation and correlation functions, statistical analysis tools, and data

visualization primitives. These functions are either implemented through open source libraries

for Machine Learning (ML) and statistical analysis, in particular WEKA16 and Scikit-Learn17

libraries, and tools for Big Data analysis.

Figure 34: C3ISP Analytics Engine

The infrastructure depicted in Figure 34 relies on a core of Analysis Tools and on three

functional modules to handle the data flow in the engine. The Format Adapter Interface, is

an interface to the Format Adapter component (via the ISI API) already described in the

previous section, which will prepare the format of information, from the structured CTI format,

to the one needed by the required analysis algorithm. The Data Lake Buffer is a temporary

storage in which pieces of information used for analysis are stored (see also Buffer Manager in

Section 5.3). The specific structure for storage in the buffer will depend on the specific analysis

to be performed, i.e. it could be a simple data buffer to store temporarily the actual parameter

of the analysis function, or it can embody a structured or unstructured database for big data

storage, to be used as buffer for the map-reduce operations. The Result Buffer will contain

temporary and final results, acting thus both as a complimentary component to the Data Lake

Buffer, and to store the final results before they are sent to the ISI via the Format Adapter

Interface.

All the analytics functions considered are compatible with the Data Manipulation Operation

described in the ISI and their analysis is completely under the control of the C3ISP Framework.

The following subsections describe the status of implementation for this First Version of the

C3ISP platform (M24).

6.1.1. Implementation and Integration Status

The analytics engine is currently integrated in the C3ISP operative workflow and an instance

of it is currently running on a dedicated machine in the CNR premises. At M24 the C3ISP

16 http://www.cs.waikato.ac.nz/ml/weka/

17 http://scikit-learn.org/stable/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 61 of 104

Analytics Engine integrates a first set of analytics offered to the various pilots through the IAI

API. The functionalities of the available analytics have already been tested, also verifying the

correct reception of data from the ISI API with applied DMO when needed, data conversion

operated by the Format Adapter, data analysis and delivery of results to requesting prosumer.

The major goals for the final prototype are the integration of a larger set of analytics needed to

satisfy all the pilot requirements related to expected results, and an efficient management of

very large sets of data (Big Data). Both of these activities are currently being carried on as part

of the maturation activities.

6.1.2. FHE Analytics

At M24 the FHE Analytics are used to operate treatments on encrypted words and focus on

encrypted IPv4 addresses which have two advantages for homomorphic computations, they are

short (32-bits) and fixed-sized words.

FHE Analytics offer tools which permit to detect if an encrypted IPv4 belongs to a set of

encrypted IPv4s.

6.1.2.1. Implementation and Integration Status

As a reminder, the backend employs the compilation chain Cingulata developed by CEA [10].

This tool permits to operate homomorphic cryptography on binary data. That is, it permits to

write a user-friendly C++ program to define computations on encrypted data (ciphertexts). This

program permits to construct a Boolean circuit of BLIF type which is used for two tasks:

1) Parameter generation for Brakerski/Fan-Vercauteren homomorphic cryptosystem

[11][12] (named B/FV or FV in the literature) stored in a xml file;

2) (Homomorphic) Evaluation, that is to execute FHE Analytics.

Let us discuss about modifications brought to FHE Analytics implementation:

 IPv4 representation has been modified in the C++ program to decrease the number

of AND gates. This impacts time performance as shown in D8.2, Section 7.2.4. It is

represented by one 32-bit integer rather than four 8-bit integers;

 Elementary data have fixed size but input/output data (e.g. list size) in a FHE

Analytics is variable. On another side, the BLIF circuits have fixed-size inputs and

outputs. Pre-computations and post-computations on clear data (plaintexts) have

been done to allow FHE Analytics on variable-size data and to obtain variable-size

results;

 Creation of BLIF circuit databases for each FHE Analytics and for lists’ size smaller

than 150. This saves time by avoiding BLIF generation at each call;

 Offline encryption of a toy IPv4 set/list with fixed cryptographic key set. It helps

for benchmarks and is useful for use with real data.

 List location is not hardcoded anymore, it is now an optional argument given by

Prosumer to enable to test membership in several lists.

The implementation of an FHE Analytics regarding blacklist checks is available and deployed

in the C3ISP Test Bed (see API in Section 6.1.2.2).

The major integration step to do in the next version is to integrate the transciphering: it means

that when receiving a request for analyzing a CTI bundle packet which has been encrypted by

Kreyvium, BM should invoke K&E Manager for transcrypting and K&E Manager should store

https://github.com/CEA-LIST/Cingulata
https://www.cs.uic.edu/~jlillis/courses/cs594/spring05/blif.pdf
https://eprint.iacr.org/2012/078.pdf
http://eprint.iacr.org/2012/144.pdf

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 62 of 104

these FHE encrypted data in order that FHE-analysis component can retrieve them before

processing.

Another major goal is to improve time/memory/communication performance. We plan either

to employ TFHE (Torus – Fully Homomorphic Encryption), the current most performant

homomorphic cryptosystem (a collaborative work with CEA, best paper awards in Asiacrypt

2016) [16][17][18], or to modify data encoding and to choose to apply a batching technique

[13][14][15]. In the both cases, we estimate that the execution time can be clearly improved at

least 20 times up to 50 times. In terms of storage, we can obtain an important improvement: a

some hundred Kb for one IP instead of 4 Mb for an IPv4.

On one hand, TFHE consists in multiple optimizations of the GSW cryptosystem [19][20][21].

It will be integrated into Cingulata in the next months. It allows to evaluate an arbitrary Boolean

circuit composed of binary gates, over encrypted data, without revealing any information on

the data. It is independent of the multiplicative depth parameter which restricts levelled

homomorphic cryptosystem like B/FV. This is due to a very fast gate-by-gate bootstrapping.

This operation permits to perform more complex treatments by decreasing the noise produced

by homomorphic operations. If the noise is too important, it is not possible anymore to do

homomorphic operations. In addition, time performance can be easily estimated by counting

the number of binary gates. Each binary gate takes about 13 milliseconds (on a single-core

machine). It offers better performance than B/FV. We estimate that combining it with

transcription mechanism is a good strategy to improve performance on C3ISP Homomorphic

Algorithms during Y3.

On the other hand, batching (also called packing or Single Instruction Multiple Data (SIMD)),

enables to encrypt multiple messages in one ciphertext and thus:

 To evaluate the same homomorphic operations on each of these messages in parallel

using the packed ciphertext;

 To decrease the ciphertext expansion that is the ratio between the ciphertext size and

the plaintext size.

In our case, it consists in processing several bits at the same time rather than one. Each of these

bits is encoded into a slot. After which, the same homomorphic operations is evaluated on each

slot in parallel. The plaintext is represented by a polynomial with binary coefficient rather than

by a single bit.

The first software release proposes two APIs named belongsBlacklist and countAppearance

(see Section 6.1.2.2). They permit respectively to test if an IPv4 belongs to a blacklist (circuit

c3isp-membership, with no duplicate, see D8.2, section 8.2.4) and to count the number of

occurrences of an IPv4 in a blacklist (circuit c3isp-multiplicity, with possible duplicates). Both

takes two arguments: the requested IPv4 and the considered list size x. Time and memory

performance depends on the list size. In D8.2, Section 8.2.4, we give benchmarks for a list of

size 100. Currently, one blacklist with approximately 600 pseudo-random IPv4s is considered.

Blacklist name is hardcoded and the first x are considered during the test. It has to be modified

in the next version to consider different blacklists. In addition, transcription is not yet integrated

and has to be in next release.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 63 of 104

6.1.2.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the FHE Analytics:

Figure 35: FHE Analytics API from Swagger UI

6.1.3. Interactive 3D Visualisation

Results from the C3ISP Analytics Engine are presented as an interactive 3D visualisation. The

visualisation provides information on the number of attacks, number of susceptible nodes,

number of infected nodes, contextual information, and shows how cyber-attacks propagate

across the planet.

This component of the analytics engine is powered by 3D Repo’s collaboration platform for 3D

data, which can be accessed through a web browser or virtual reality (VR) headset. Through

the interactive visualisation, areas of interest can be flagged for review, nodes can be filtered

and grouped, and viewpoints can be saved.

6.1.3.1. Implementation and Integration Status

At M24, the 3D Visualisation component is in its third iteration following feedback from C3ISP

project partners, Figure 36.

Figure 36: 3D visualisation of attack data (Version 3)

To visualise anonymised results from the analytics engine on the virtual map, attack data is

grouped by geo-location. Information about the number of attacks, number of susceptible

nodes, and number of infected nodes are grouped spatially into non-overlapping windows of

size, x, for longitude and latitude. Noise can also be introduced to further anonymise results

from the analytics engine.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 64 of 104

In the first prototype, information such as attack vectors are shown in the visualisation, Figure

37(a). However, the visualisation becomes difficult to interpret as the number of data points

displayed increases and when the data is anonymised. Figure 37(b) shows the second prototype,

which introduced the ability to group nodes – e.g. attack data can be grouped by day – and save

viewpoints within the visualisation.

(a) (b)

Figure 37: (a) Version 1 visualisation with attack vectors; (b) Version 2 visualisation with ungrouped

attack data

The visualisation platform is implemented using Unity game engine18, which is a popular cross-

platform game engine with support for a wide range of desktop, mobile, and VR systems, Figure

38.

Figure 38: Interactive 3D visualisation on HTC’s Vive VR headset

For the final prototype, the aim is for seamless integration of the interactive 3D visualisation

through automation of tasks, such as grouping of nodes, and improved filtering and querying

of the analytics results.

18 https://unity3d.com/

https://unity3d.com/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 65 of 104

6.2. Service Usage Control Adapter

The Service Usage Control Adapter is the component of the C3ISP architecture devoted to

protecting the services offered by the IAI (described in the following section 6.5) from

unauthorized accesses and usage. This adapter, similarly to the DSA Adapter previously

described (Section 5.1), implements a Usage Control engine, thus being able to perform

traditional access control along with continuous authorisation and obligation enforcement,

which characterise the Usage Control model. Hence, the Usage Control policies enforced by

this component define, for each of the services offered by the IAI, who can perform which

analytics operations under which conditions, and whether these operations can be carried on

over time. In this case, differently from DSA which is defined by who shares the data and it is

paired with the data itself, the Usage Control policy is defined by the entity which provides the

service, and it is paired with the service to be protected. For instance, since the homomorphic

encryption based services are very resource-intensive, the provider of such a service could

define a Usage Control policy which states that only two requests can be served at the same

time. When the third request is received, the Usage Control policy checks the priority assigned

to the incoming request against the priorities of the previous two (which are running) and if the

former is greater, the running request with lower priority will be suspended to serve the third

request. The suspended request will be resumed as soon as one of the other request will have

been served.

The architecture of the Service Usage Control Adapter is the same as the architecture of the

DSA Adapter (shown in Figure 10), since both Adapters enforce Usage Control policies

expressed exploiting the same executable language. The differences between the DSA Adapter

and the Service Usage Control Adapter are that in the latter some modules are not used (DMO

Engine and Bundle Manager) and the DSA Adapter Front End is re-configured in a Service

Usage Control Adapter Front End with an embedded Policy Store (PS). The PS keeps the usage

control policies for the analytics services.

Figure 39: Service Usage Control Adapter

6.2.1. Implementation and Integration Status

At M24 the Service Usage Control Adapter has not been implemented yet and will be part of

the next cycle of activities.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 66 of 104

The major goals for the final prototype are the development of a system able to control

operations that are dynamically performed on data.

6.3. Interface to Legacy Analytics Engines

Legacy analytics engines come in different forms and thus provide different types of interface.

One may only be accessed and consumed through its graphical user interface (e.g. visual

analytics tool) while the other may provide RESTful or Java API to consume its analytics

functions (e.g. Apache Spark). Legacy engines may also put some constraints regarding on how

and from where their services can be accessed, e.g. the engine may have been deployed within

protected environment which requires adequate security measures and policy to be in place. It

is therefore important for the C3ISP framework to offer high flexibility in providing access to

such legacy engines in order to maximise its utilisation.

The IAI provides a RESTful API to invoke the legacy analytics services as well as to prepare

the data in specific format required for consumption by the legacy engines. The invocation

method will depend much on the type of interface supported by each legacy engine. If the legacy

engine is a web-based tool with its own graphical user interface the invocation may usually take

form of redirection of HTTP requests/responses between service consumer and the legacy

engine. In case the legacy engine has its own RESTful or Java API, the IAI API will act as a

service wrapper of existing legacy analytics services; this could also mean that an analytics

service exposed by the IAI API to C3ISP consumers may make calls to one or more analytics

functions supported by the legacy engine’s API.

6.3.1. Implementation and Integration Status

The SATURN Visual Analytics tool is being integrated into the C3ISP Framework as our first

legacy analytics engine; it will provide visualisation of security insights extracted from the

shared/merged security data as well as the results of C3ISP-own analytics service. SATURN is

a web-based tool with its own graphical user interface to allow interactive usage. The tool is

provided by BT, and due to its licensing agreement, the tool can only be deployed within

protected BT network environment.

At M24 an OpenVPN19 server has been set up at the respective BT network domain in order to

allow secure tunnelled access from any client’s or service consumer’s machine via public

Internet. As a prerequisite, an OpenVPN client software with the corresponding client’s key

needs to be installed on the machine requiring access to the SATURN tool. We have established

a semi-permanent OpenVPN tunnel between the IAI machine (iaic3isp.iit.cnr.it) and the

respective BT network gateway. This VPN tunnel can be used in two ways:

1. To allow IAI API seamlessly redirect any service request to SATURN which originates

from any service consumer’s machine that doesn’t have its own OpenVPN client

software and credentials, and

2. To provide the SATURN tool with a secured (read) access to the Virtual Data Lake

(VDL) instance which stores the data that have been prepared earlier by IAI API. This

access has been successfully tested by manually configuring a new data source in

SATURN using the newly created VDL instance’s URI (this is the VDL created by the

Buffer Manager, see 5.3). It is up to the C3ISP consumer (e.g. a Pilot component)

whether or not to automate such configuration task depending on its use cases.

Furthermore, the SATURN tool has been configured to make use of C3ISP Identity Manager

(i.e. Open LDAP, see 8.1) for authenticating and authorizing its users according to their roles.

19 https://openvpn.net

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 67 of 104

This will ease the identity management within the C3ISP subsystems when examining and

enforcing the DSA policies based on the user’s roles and attributes, e.g. when preparing and

reformatting the data for the VDL.

The major goals for the final prototype at M36 are:

1. To implement the HTTP redirection service at the IAI API which will use the semi-

permanent OpenVPN tunnel for providing legacy analytics service access to any

authorized C3ISP users. Such users need to be authenticated using the C3ISP Identity

Manager;

2. To provide access to a legacy analytics engine that supports either RESTful or Java API

for consuming its analytics services. Potential candidate is the Apache Spark engine that

is capable for processing and analysing data stored in Big Data platform such as

Hadoop.

6.4. Virtual Data Lake

The Virtual Data Lake (VDL) is the dedicated service instance for storing CTI data in raw

format to be consumed by a Legacy Analytics Engine. We have selected Apache Hadoop

Distributed File System (HDFS) as a basis to implement this module. In order to ease the

integration at initial stage we also selected a Relational Database Management System

(RDBMS) such as MySQL to implement VDL. MySQL is supported by our first legacy

analytics engine, i.e. the SATURN tool.

6.4.1. Implementation and Integration Status

A new VDL can be instantiated by calling the prepareData function of the ISI’s Buffer

Manager API. The Buffer Manager’s service will be called by the IAI API as part of its legacy

analytics service invocation process. Section 5.3 provides more details on the Buffer Manager

API. At M24 each VDL instance is created as a new database within a MySQL database system

that is co-located on the IAI machine (iaic3isp.iit.cnr.it). The raw CTI data is populated into a

new table of that database and can only be accessed using specific credential

(username/password pair). The database connection details and credentials are provided as a

URI (i.e. JDBC20 URL) to be used later for configuring a new data source in the SATURN tool.

Following is an example of such VDL-URI:

In case a VPN tunnel is used to access the VDL instance the corresponding server address will

be replaced with a local IP address by which the IAI machine can be contacted from the other

end of the tunnel. The Buffer Manager API also supports a function to release the data stored

in the VDL, i.e. removing the database and its associated credentials, once the data have been

consumed and are not required any longer. This removal process could be mandatory in order

to meet the obligation rules specified in the corresponding DSA policy.

The major goal for the final prototype is to implement the VDL in HDFS which can then be

accessed by any supporting legacy analytics engines.

20 Java Database Connectivity

jdbc:mysql://iaic3isp.iit.cnr.it:3306/vdl_u_2688f7f6c2cf4c?useLegac

yDatetimeCode=false&serverTimezone=Europe/Rome&usr=u_2688f7f6c2cf4c

&psw=0ebc44ed&table=table_bf7d3199_7a97_4f41_bc41_6f1e724e8198

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 68 of 104

6.5. IAI API

The IAI API is the C3ISP front-end for interacting with the analytics services engines (both

C3ISP-aware and legacy/already existing analytics services). It exposes methods for invoking

analytics services on a DPO data (or multiple DPOs) shared and provided by the Prosumer(s).

For this reason, the API includes:

 A method for invoking an analytics service (runAnalytics), which will receive as input

the service analytics name (in the form of a unique identifier) and the DPO identifier

(DPO-Id) to be involved in the analytics. The analytics name is an identifier specifying

an analytics service available in the analytics engine;

 A method for processing multiple DPOs, i.e. two or more DPOs can be involved as

input to an analytics service. The method is analogous to the previous one, but it receives

as input a list of DPO-Id.

In the latter scenario, we assume that the DSA associated to each CTI is the same: this is the

reasonable scenario where several Prosumers share CTI data, by using their agreed DSA, and

that want to perform analytics on them.

Depending on the kind of analytics service, the IAI API will be in charge of triggering the

creation of the VDL (for the Legacy Analytics Service), by performing the required operations

against the ISI (e.g. Read DPO) to feed the VDL instance. We also foresee the possibility of

having a specific API (or a specific analytics service) that will create the VDL instance without

specifically running an analytics job (i.e. a void analytics service): this will be used by a Legacy

Analytics Engine that will need to interact directly with the sanitised data, e.g. for visualisation

purposes where it has to navigate or drill down into the stored information in a dynamic way.

6.5.1. Implementation and Integration Status

At M24 the IAI API offers a first set of analytics aimed at addressing analytics requests from

the four pilots. The available API are used to invoke analytics related to WP2, WP3, WP4 and

WP5 activities, moreover, a generic RunAnalytics function has been added as a generic

interface to call analytics. The APIs accept as input a JSON string reporting all the parameters

that are specific for the invoked analytics. The RunAnalytics accepts a JSON where the first

parameter is the “Analytics Name”, which allows the indirect invocation of the available

analytics. More analytics are being added and linked through the IAI API as they are developed:

 detectDGA: it takes domain-name logs and checks if they are DGA (Domain Generated

Algorithm) using a third-party algorithm;

 matchDGA: it takes domain-name logs and checks if they are DGA using a public

source of known DGAs;

 runAnalytics: generic method to invoke any analytics available in the IAI API, which

takes as input the name of another analytics to invoke and the set of parameters;

 spamEmailClassify: analytics that takes as input a set of spam emails in eml format

and returns the class assigned to each email, based on the spammer goal (e.g. phishing,

advertisement, etc.);

 spamEmailClusterer: analytics that takes as input a set of spam emails and divides

them in clusters based on structural similarity;

 spamEmailDetect: takes as input one or more eml files and separates them in genuine

emails (Ham) and unsolicited ones (Spam) sets;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 69 of 104

 analyseMaliciousHost: analytics that takes as input a set of security logs such as

IDS/IPS alerts, Malware alerts or Web Proxy logs in csv format and returns a prioritised

list of malicious hosts based on specified criteria (e.g. frequencies of occurrence,

commonness, threat level, etc.);

 analyseDNSTraffic: analytics that takes as input a set of DNS request logs in csv format

and returns a list of domain names with suspicious network traffic behaviours (e.g. high

frequency of requests);

 findVulnerability: analytics that searches in an archive of CVE, stored in the DPOS

the keyword passed as a parameter;

 findMalware: analytics that searches, in an archive stored in the DPOS, information

about the malware related to the keyword.

Complete description of the available APIs is reported in deliverable D8.2.

The major goals for the final prototype are the inclusion of all analytics needed to address the

pilots’ requirements. Furthermore, a set of generic analytics which are not pilot specific will

allow generic users of the IAI API to run simple data analysis operation on provided or stored

data.

6.5.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the IAI API:

Figure 40: IAI API from Swagger UI

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 70 of 104

7. Subsystem Updates & Status: DSA Manager
The DSA Manager is an autonomous subsystem of the C3ISP Framework appointed to provide

services for the definition of policies in the DSAs, creation, storage and management of DSAs

to the Prosumers.

This section reports on the revised DSA Manager that has been developed at M24 and deployed

into the C3ISP Test Bed.

The DSA Manager is made up of the following components, described in details in the next

sections:

 DSA Editor: to write the sharing rules that can be understood by humans;

 DSA Mapper: to translate the sharing rules to an enforceable language that can be

processed by a machine;

 DSA Store API: to manage the DSAs from the other components;

 DSA Manager Gateway: to provide DSA services to other C3ISP subsystems;

 DSA Store: to persist the DSAs on a storage area.

Figure 41: DSA Manager

The DSA Manager interacts with external clients:

 the Prosumer, which would use the services exposed by the DSA Editor and

(optionally, if needed) DSA search capabilities exposed by the DSA Store API;

 the Information Sharing Infrastructure (ISI), that needs to use the DSA Manager

Gateway for supporting the data sharing among the Prosumers using the C3ISP

Framework;

 the Common Security Services (CSS) for secure auditing of its activities and for

identity management.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 71 of 104

7.1. DSA Editor

This component has been designed in detail during implementation and the following diagram

describes its internal modules and the interaction with the other DSA Manager’s components:

Figure 42: DSA Editor

The component is made of the following modules:

 DSA Editor Front End: this is the entry point that allows Prosumers to access the

available DSAs via a role-based access control system, where each user can work

on his/her own DSAs without impacting other users. It interfaces with the DSA

Editor Tool to allow the creation of DSAs and with the DSA Manager Gateway to

manage the users’ Profile Store, including some DSAs functions (in particular the

“revoke DSA” and “delete DSA” operations);

 DSA Editor Tool: a user-friendly and easy to use web application that allows

creating both DSA Templates (a generic DSA with predefined useful policies for a

certain context that must be instanced to be used) and of DSA instances (a DSA

specifically created from a DSA Template by adding rules for refinement that can

be directly used for enforcement): see D8.1 for more on DSA and DSA Templates;

 Profile Store: this is a repository that hosts the users that can access the other

modules with their roles and a reference to the DSAs they have written.

A very detailed description about the usage and appearance of the DSA Editor is contained in

D8.3.

7.1.1. Implementation and Integration Status

At M24 the DSA Editor has been enhanced to support new vocabularies based on a single

common ontology defined for the Pilots. Further, it has been extended to allow specifying terms

to represent DMOs with parameters and options (e.g. as required by the Anonymization

Toolbox, e.g. AnonymizeBySuppression) and Data Analytics services (e.g. InvokeDetectDGA).

Current supported DMOs and Data Analytics services, as well as how they have been

implemented, are reported in D8.3.

The DSA Editor now is fully integrated with the other components of the DSA Manager

subsystem.

As anticipated, the DSA Editor keeps user information on a Profile Store. This is implemented

as a relational database on MySQL. Its schema is straightforward and is shown next:

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 72 of 104

Figure 43: User Profile relational database schema. There is a 1:n relationship between a User and its

DSAs, and potentially, a DSA can be seen by many users, which is why we added a table for the user-DSA

relationship.

Please refer to D8.3 for an in-depth description regarding the maturation of this component. For

the next period, we will focus on enhancing the usability of the DSA Editor Tool module,

making more user friendly for the end-user, as we will also get feedbacks based on the Pilots

evaluation.

7.2. DSA Mapper

The DSA Mapper is responsible for translating the DSA policies from the Controlled Natural

Language (CNL) employed by the DSA Editor into a low level directly enforceable policy

language (XACML-based called UPOL). It is called by the DSA Editor to translate the DSA

policy before the DSA will be persisted to the DSA Store.

The current status of the DSA Mapper functionalities maturation and how they work are

described in D8.2.

The improvements of the DSA Mapper within the second year of the project are mainly related

to the new functionalities implemented by the DSA Editor to manage new kind of policies or

different structure of policies or vocabulary.

Hence, the architecture of the DSA Mapper component is still the same but its translating

capabilities are enhanced in terms of accepted vocabularies, and kind of policies that can be

mapped from CNL to UPOL/XACML.

7.2.1. Implementation and Integration Status

At M24 the DSA Mapper is fully integrated in the architecture. It can be called by the DSA

Editor and it is able to map the DSA written by using the DSA Editor. It persists the mapped

DSA by using the DSA Store API.

The DSA Mapper is implemented via a RESTful web service that provides the following API:

 MapDSAByID, which takes as input a DSA identifier, fetches the corresponding

DSA and maps all the policies creating the mapped DSA (a DSA that contains both

the CNL statements and the UPOL representation in a single XML container);

 buildUPOL, which tasks as input a DSA identifier and returns the enforceable

UPOL representation. This DSA representation is then used for pairing it with the

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 73 of 104

CTI data. This API is part of the Bundle Manager workflow, which calls it via the

DSA Manager Gateway APIs.

As described more in detail in D8.2 Section 4.2, the DSA Mapper has been improved to be able

to manage the new capabilities of the DSA Editor. In particular, to:

 Support new vocabularies for the C3ISP pilots’ context: it is able to learn new

vocabularies to manage policies related to the four C3ISP’s pilots;

 Support definition of Data Manipulation Operations (DMOs) (pre/post-processing

rules): the DSA Mapper is able to recognize DMO policies and to translate them as

obligations policies in which the subject is always the term “System”;

 Support for Data Analytics Operations: the DSA Mapper translates analytics

functions as “Actions”;

 Translate policies on Analytics Results: policies related to data derived from

analytics functions are in a separate section of the DSA and the DSA Mapper

translates them in a separate section too. Note that the current implementation of the

DSA Mapper manages policies on first order derived data, i.e., on data generated as

results of the application of analytics on original data, the one the DSA is related to.

In the near future, the DSA Mapper will be extended to also manage policies on data derived

from derived data (second order or deeper derived data).

7.2.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DSA Mapper:

Figure 44: DSA Mapper API from Swagger UI

7.3. DSA Store API

The DSA Store API is the external interface of the DSA Store subsystem, and it provides

functions for managing the storage of DSAs. The DSA Store is used by the ISI to retrieve DSAs

or by the DSA Editor when it needs to create or update DSAs.

The DSA Store API supports the following interface:

 Create DSA: used to persist a DSA in the DSA Store. The API returns a unique

DSA identifier;

 Read DSA: used to retrieve a DSA by its DSA identifier;

 Update DSA: used to modify the content of an already existing DSA, by its

identifier;

 Delete DSA: used to delete a DSA, by its identifier;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 74 of 104

 Search DSA: given a JSON-based search string (more in D5.3), query the DSA

metadata repository, and return a set of metadata entries corresponding to the

matching DSAs (alternatively, a set of DSA IDs, depending on an input parameter).

DSA metadata is stored in a JSON document, and contains a set of DSA fields

extracted from the DSA XML files.

The DSA Store API has been redesigned to support Create, Delete, and Read of DSAs, as well

as the new Search functionality. The search functionality was added to support managing

multiple DSAs, and allowing Pilot applications to retrieve only those DSAs which are relevant

to the Pilot user and application.

Functionality related to manipulating DSA status, validity and enforceable policies is now

available through the DSA Manager Gateway. The following functionality has been removed

from DSA Store API to another component: Retrieve the status of a DSA, Check DSA Validity,

Fetch enforceable policies from the DSA, Revoke a DSA, Delete enforceable policies from a

DSA and Add/Update enforceable policies in a DSA.

7.3.1. Implementation and Integration Status

At M24, the prototype of DSA Store API is fully functional and integrated with the DSA Store

(See Section 7.5). Its REST API is deployed at the C3ISP test environment21.

For storing a DSA into the DSA store, a pair of two corresponding JSON documents are created

in the DSA Store: one is the DSA itself and another is the DSA metadata, which are linked by

the DSA-Id. The DSA metadata contains a set of DSA fields extracted from the DSA XML

files and it is used for the sake of Search DSA.

In fact, in addition to the Create, Read, Delete functionalities described during the design phase,

the prototype also supports searching on a set of DSA fields using JSON-based query format.

The format of these queries is identical to that defined for the Data Protected Object (see D8.2),

with a DSA-specific set of terms.

7.3.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DSA Store API:

Figure 45: DSA Store API from Swagger UI

7.4. DSA Manager Gateway

The DSA Manager Gateway was formerly an internal module part of the DSA Editor. It has

been extracted and promoted to a standalone component because its services are useful not only

to the editor itself, but also to the other DSA Manager components and to the ISI subsystem. In

fact, the DSA Manager Gateway is a list of APIs that the other components can use to interact

with the DSA Mapper and the DSA Store at more logical level. In particular, it provides an

21 https://dsamgrc3isp.iit.cnr.it/dsa-store-api/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 75 of 104

interface that contains more business than the DSA Store API, which is a direct CRUD interface

to the DSA Store (e.g. the DSA Manager Gateway can return parts of the DSA, instead of the

whole DSA returned by the DSA Store API).

The DSA Manager Gateway supports the following interface:

 Retrieve the status of a DSA (see DSA status in section 3.1 of D8.1), by interacting

with the DSA Store API;

 Add/Update enforceable policies in a DSA, given the DSA identifier: used to add

and update enforceable policies (i.e. the policies created at the DSA Mapper level,

see section 7.2) contained in a DSA;

 Fetch enforceable policies from the DSA, given the DSA identifier: used to extract

enforceable policies from a DSA;

 Delete enforceable policies from a DSA, given the DSA identifier: used to delete

enforceable policies from a DSA;

 Check DSA Validity: used to verify if the DSA is in a valid state (e.g. not expired,

not revoked, etc. See D8.1);

 Revoke a DSA: as explained in the D8.1 section 3.1, the DSA can be revoked for

certain reasons (e.g. the parties involved in the agreement decide that it is no longer

valid), so it should be possible to revoke a DSA given its identifier.

7.4.1. Implementation and Integration Status

At M24, the DSA Manager Gateway is fully implemented. Its REST API services are deployed

at the C3ISP test environment. The component is stable and we do not foresee any major change

in the future. However, since we moved DSA Manager Gateway out of the DSA Editor, it shows

many internal APIs that we might need to refactor in order to reserve them for DSA Editor use

only.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 76 of 104

7.4.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DSA Manager Gateway:

Figure 46: DSA Manager Gateway from Swagger UI

As we said in the previous section, there are also some internal-use only APIs. The ones

highlighted in red are those used for implementing the API listed in 7.4.

7.5. DSA Store

The DSA Store is a database that acts as a repository where the DSAs are stored and consumed

by the DSA Store API.

7.5.1. Implementation and Integration Status

At M24 the DSA Store is fully implemented and working. It has been implemented with an

instance of MongoDB, a NoSQL database. MongoDB uses the concept of collections, which is

a group of document, much like the same a relational database have tables and records (tuples).

Collections are stored into MongoDB databases.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 77 of 104

We defined a dedicated MongoDB database called “dsastore” with a collection called

“dsaCollection”. The documents in the “dsaCollection” are the DSA and are stored by the DSA

Store API. As any MongoDB collection, the “dsaCollection” is schema-free, which means that

its schema is dynamic and is created per each document (i.e. DSA) when it is stored.

In particular, as described in 7.3.1, for each stored DSA a pair of documents are created in the

“dsaCollection”: one for the DSA itself, and one for the DSA metadata (used to support the

search function of the DSA Store API). The next screenshot shows an example of these two

documents, as they are stored in MongoDB:

Figure 47: the DSA metadata part (JSON on the top) and the DSA document (JSON on the bottom,

partial). The two MongoDB documents are linked by the “id” and “_id” fields

MongoDB is set up for requiring user authentication and a dedicated service account has been

defined to allow the DSA Store API to connect to the “dsastore” database.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 78 of 104

8. Subsystem Updates: CSS – Common Security Services
The CSS subsystem is made up of the following components, those updated at M24 are

described in detail in the next sections:

 Identity Manager: to provide identification, authentication services, users attributes

for policy evaluation;

 Key and Encryption Manager: to manage cryptographic keys and encryption

services, including functionalities for homomorphic encryption;

 Secure Audit Manager: to allow secure storage of events occurring during the C3ISP

Framework operational activities.

Figure 48: Common Security Services

This section reports on the revised CSS that has been developed at M24 and deployed into the

C3ISP Test Bed.

The CSS interacts with external clients:

 The DSA Manager, for identification and auditing purposes;

 The Information Sharing Infrastructure for identity-related purposes, key and

encryption services and auditing;

 The Information Analytics Infrastructure for identity-related purposes and auditing.

8.1. Identity Manager

The Identity Manager aims at identifying entities and storing authorization information within

C3ISP.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 79 of 104

8.1.1. Implementation and Integration Status

At M24 the Identity Manager based on an LDAP service is fully deployed, running and working

properly. It holds user entities that can be used for authentication. The user attributes can be

used in DSA policies, since the Identity Manager is integrated with the Attribute Managers

described in 5.1.3.1. We also setup group-based memberships, which allows us to defined DSA

policies that uses groups (as reported in D8.2 in the DSA Editor section).

We have setup also group membership for the Enterprise and SME pilots, which will use DSA

policies based on this authorisation check, as shown in the next figure:

Figure 49: Pilots’ LDAP structure

In the next period, we will continue to support Pilots integration activities by refining the

Directory Information Tree structure and user attributes, should they have the need for their

own authorisation DSA policies. In particular, Pilots like ISP and CERT may support standard

for authorization such as, Oauth2 [23] and/or SPID [24] to ease the interaction from

stakeholders with C3ISP Framework.

8.2. Key and Encryption Manager

The Key and Encryption Manager (K&E Manager) is responsible for key management and

encryption services needed for ensuring the confidentiality data throughout the C3ISP

Framework. Our goal at M24 during component implementation is to save time by using a

suitable pre-existing open source software and to enable to integrate innovating features, mainly

homomorphic encryption mechanism, in such software. By that way, the following

requirements from D7.2 were clarified and they should be taken into account during the choice

of a free open-source software:

 Support key generation with classic cryptosystems like AES, RSA or Elliptic Curve

Digital Signature Algorithm (ECDSA);

 Support key management, i.e. the tool can guarantee authenticity, integrity and

confidentiality of secret and public keys management;

 Support key deletion;

 Support key versioning;

 Provide regular updates and maintenance.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 80 of 104

Among the existing solutions we have evaluated, we put in short list the ones offering regular

updates, which are the following: Key Management Interoperability Protocol (KMIP),

OpenStack™ Barbican, and HashiCorp Vault.

 KMIP: some features in KMIP are released as open protocol, but the most of them

are not. The last KMIP version was released in 2015, since then, no implementation

or any update has been done. However, it is able to handle AES and RSA, but not

the elliptic curve-based mechanism;

 OpenStack™ Barbican: this is the key management component for OpenStack (one

of the main open source solutions for cloud computing). Barbican meets all the

requirements and recommendations. Thanks to it being integrated in the OpenStack

project, it is updated every 6 months. The desired cryptosystems AES, RSA, and

ECDSA are implemented. However, the main disadvantage of Barbican is its

dependency on OpenStack, it means that an entirely dedicated machine should be

reserved to run Barbican. In particular, this makes it difficult to have a fully local

installation;

 Vault: this is part of a software suite developed by HashiCorp for distributed

architectures. Vault is an interesting solution because its installation is simple (only

an executable file to download and run in standalone way). Moreover, many API in

various programming languages exist. Especially, the Vault features implemented

in Java are regularly updated from the community. However, poor documentations

and few tutorials for Vault usage are the main disadvantages of this technology.

After considering advantages and disadvantages in each of these three technologies, we finally

decided to choose Vault for implementation of K&E Manager. According to Section 7.2 of

Deliverable 7.2, Vault is used for supporting two modules namely Data Protected Object (DPO)

– Key & Encryption Manager and Full Homomorphic Encryption (FHE) – Key & Encryption

Manager.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 81 of 104

8.2.1. Implementation and Integration Status

With respect to the C3ISP high-level architecture defined in Section 7.2 of Deliverable 7.2, the

Key & Encryption Manager interacts with the C3ISP subsystems and components as in the

following figure:

Figure 50: Key & Encryption Manager architecture

8.2.2. K&E Core

At M24, K&E Core APIs was almost done. These APIs allow dispatching the requests from the

ISI (specifically the Bundle Packager or the DMO Plugin for transcrypting preparation) and

from the IAI (specifically the FHE Analytics).

Table 34 – Software requirements

Specification K&E Core API Status Description

Integration with ISI – Bundle

Packager

100% Using AES encryption, it allows to encrypt and decrypt

the packet of data protected object (DPO) during the

process of creating, updating and deleting. The key

management platform for One Pilot One Key was

done, which is mainly identified by DSA ID.

Integration with ISI – DMO Plugin for

transcrypting preparation

80% The major tasks are:

 Developments for key management, by

using Kreyvium encryption, which is a

lightweight homomorphic-friendly

cryptosystem;

 Selection of the correct keys and parameters

for transcrypting Kreyvium – encrypted

data to FHE encrypted data.

To satisfy the C3ISP requirements, we designed RESTful APIs which are supporting the

following functionalities:

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 82 of 104

1. The Advanced Encryption Standard (AES): a widely used specification established by

the American government. We do not use RSA, because of its performance and its

practices;

2. A Fully Homomorphic Encryption (FHE) scheme: we will use an implementation of

the Fan-Vercauteren (FV) scheme extracted from Cingulata (backend of FHE Analytics,

see Section 6.1.2);

3. Kreyvium: a lightweight homomorphic-friendly cryptosystem. It is used for

transciphering, i.e. turning data encrypted with Kreyvium into the corresponding

homomorphically-encrypted data without ever decrypting the data.

The main innovating feature of the K&E Manager we are working on is integrating

homomorphic encryption mechanism in the Vault software. Moreover, the K&E Manager can

offer a tranciphering feature for integrating with FHE technology, i.e. it allows trans-crypting

data from classically encrypted form to homomorphic encryption form for analysing this data

with FHE later.

8.2.2.1. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the K&E Core:

Figure 51: K&E Core API from Swagger UI

8.2.3. Key Management: Key Generation & Access

The Key ID is identified by the DSA ID and the desired version number of Vault.

Figure 52: Key generation in general case

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 83 of 104

8.2.3.1. DPO Key Management

This is the description for the key management of the DPO Key Manager module:

Table 35 – DPO Key Manager

Specification of DPO Key

Manager API

Status Description

Integration with K&E Core for key

generation and management during

data Bundle creation

100% Using AES encryption scheme, DPO Key

Manager API allows generating the

public/secret keys assigned to DSA ID (see

Section 8.2.3.2)

Key Generation with AES

Vault generates keys automatically using the random number generator of the operating system.

A user might call this function several times. Each time they do so, a newly created key set

replaces the former one. Vault keeps track of the latest version of the keys and also keeps former

versions in storage. Keys are stored on a Vault dedicated MySQL database backend.

Figure 53: Key generation for using AES.

Key Access

Vault retrieves the latest version of the key set from the MySQL backend on its own. In case

the user asks for a key set that does not exist, i.e. this user never asked for any keys to be created

before, Vault automatically creates a suitable set.

Figure 54: Key access for using AES

8.2.3.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DPO Key Manager:

Figure 55: DPO Key Manager API from Swagger UI

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 84 of 104

8.2.3.3. FHE Key Management

This is the description for the key management of the FHE Key Manager module:

Table 36 – FHE Key Manager

Specification for FHE Key

Manager API via K&E Core

API

Status Description

Kreyvium key management for

tranciphering

100% Using Kreyvium encryption scheme, FHE Key

Manager API allows generating the secret key

assigned to DSA ID (see Section 8.2.3.4).

FHE key management 100% From FHE technology based on FV encryption

scheme, this API provides a triple keys (public

key, secret key and evaluation key). From each

FHE analysis model, FHE Key Manager API

provides a triple keys because of security

parameters. By that way, each Prosumer which is

identified by DSA ID can be in possession of

multiple triple FHE keys.

FHE Key Generation

In order to generate FHE keys, we use Cingulata toolchain. In the case of FHE technology, we

do not wish Vault keeping track of key versioning. Hence, the function for FHE key generation

was implemented in the Java API and we used Vault only for interacting with its MySQL

backend.

Figure 56: FHE key generation process

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 85 of 104

FHE Key Access

This is the process for accessing the generated FHE keys which are only applied for decrypting

FHE encrypted data, but the secret key is never out of K&E Manager:

Figure 57: Retrieving FHE key process, only in the case of decrypting FHE ciphertexts

8.2.3.4. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the FHE Key Manager:

Figure 58: FHE Key Manager API from Swagger UI

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 86 of 104

8.2.4. Encryption and decryption

The following diagram shows the encryption and decryption process:

Figure 59: Encryption and decryption processes in general case

Note that Data denotes the clear data, whereas [Data] denotes the corresponding encrypted data.

The security parameters for FV cryptosystem are used to determine the circuit multiplicative

depth, this parameter is needed to instantiate correctly and securely FV cryptosystem. These

parameters are also used for the FHE Analytics and a choice for processing with transciphering

if necessary.

8.2.4.1. DPO Encryption and decryption using AES

This is the description for the DPO encryption and decryption functionalities using AES of the

DPO Encryption Manager module:

Table 37 – DPO Encryption Manager

Specification for DPO

Encryption Manager about

Encryption/Decryption API

Status Description

Integration with K&E Core for

encrypting or decrypting bundle

data

100% Using AES encryption scheme, the DPO

Encryption Manager API allows encrypting or

decrypting the bundle data by using DSA ID as

key identifier (see Section 8.2.4.2).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 87 of 104

The following diagram describes the process:

Figure 60: Encryption and decryption for using AES

8.2.4.2. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the DPO Encryption Manager:

Figure 61: DPO Encryption Manager API from Swagger UI

8.2.4.3. FHE Encryption and Decryption (based on FV scheme)

This is the description for the FHE encryption and decryption functionalities based on FV

scheme of the FHE Encryption Manager module:

Table 38 – FHE Encryption Manager

Specification for FHE

Encryption Manager about

Encryption/Decryption API

Status Description

Encrypting or decrypting data in

FHE form

100% The FHE encryption / decryption API allows

decrypting the bundle data by using DSA ID and

FHE model as key identifier (see Section 8.2.4.4).

The API for transciphering data

to FHE form

80% The API allows encrypting data with Kreyvium

encryption and automatically providing and

storing such data into FHE form for analysis with

FHE later. At the moment of writing this

deliverable, the feature for automatically

generating & storing Kreyvium encrypted data to

FHE form is not finished yet.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 88 of 104

The following diagram describes the process:

Figure 62: FHE Encryption and Decryption process

8.2.4.4. Published APIs

The following screenshot shows the implemented API that are published for usage by the

components interacting with the FHE Encryption Manager:

Figure 63: FHE Encryption Manager API from Swagger UI

Multiple encryption schemes in CTI data for FHE analysis purpose

According to blacklist verification use case, before encrypting entirely a CTI data and storing

into the DPOS, we use an additional level of Kreyvium encryption for the fields that contain

IPv4 addresses. Once those are encrypted, the CTI data can be encrypted by the DPO

Encryption Manager. This encrypted IP will be transcrypted into FHE for analysis later.

8.3. Secure Audit Manager

All the C3ISP components should be integrated with the Secure Audit Manager to track all

the critical operations (e.g. the policies evaluation and their enforcement results, analytics

execution, etc.) in order to achieve the accountability requirement for the C3ISP Framework.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 89 of 104

We plan to have two distinct features to support the auditing process:

 Inter-component auditing: trace the REST calls between the modules, components

and subsystems. This helps assuring the right workflow is in place and seeing at

each moment who is calling what;

 Internal-component auditing: audit critical events raised by a module or a

component (e.g. policy evaluation, user attribute fetch, DPO bundle

encryption/decryption, etc.). This assure accountability of actions for relevant

software artefacts.

By combining both features, we can obtain a complete picture of what the C3ISP Framework

is doing and ultimately provide an accountability track that can be useful to demonstrate that

the Data Sharing Agreement is being respected.

Figure 64 describes the architecture that supports the above-mentioned features:

Figure 64: Secure Audit Manager architecture

The “REST call” is any request to a C3ISP component: since the C3ISP Framework employs a

REST-based micro-services architecture, all the communication between components and

modules happens via RESTful web services (inter-component auditing). The “Auto Logger

Service” is a component that automatically traces received REST requests and traces them via

a “C3ISP Logging Library”. It is that library that feeds a Secure Audit Manager service. In

order to accommodate for different Audit Managers, we interpose a Secure Audit Manager API

that abstracts the interface between the C3ISP Logging Library and the Audit Manager. The

Auto Logger Service will provide a first basic level of logging, with common attributes and

values for all the components (e.g. timestamp, source address, target address, module involved,

REST request parameters, etc.).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 90 of 104

The “Generic C3ISP Module” is any of the C3ISP modules in the C3ISP architecture: to support

internal-component auditing, also the C3ISP modules will be able to trace their activity by

integrating with the C3ISP Logging Library. Also, this logging will be traced in the Secure

Audit Manager. The logging from the C3ISP modules will contain more detail than those from

the Auto Logger Service, since each component owner will be able to set precisely the logging

attributes and values.

8.3.1. Implementation and Integration Status

At M24 the Secure Audit Manager has not been integrated yet and will be part of the next cycle

of activities. However, we have a prototype of it that is running in isolation.

The C3ISP Logging Library is based on the REST paradigm: we used a standard Logging API

(i.e. the SLF4J22 logging framework) and extended it with a RESTful extension that is able to

send logs via web services requests. At the end, also the logging mechanism itself could be

traced by the Auto Logger Service.

Since all the C3ISP components are deployed on a servlet container (Apache Tomcat), the Auto

Logger Service can act as a global Servlet filter that intercepts all the HTTP requests/responses

and traces their details.

The Secure Audit Manager API is a REST-based server that accepts the REST calls from the

C3ISP Logging Library and will send them to the Audit Manager. In fact, the Secure Audit

Manager will be an off-the-shelf product: we plan to use CEF logging format, in such a way

that we will be able to integrate with many products, both OSS and commercials.

The major goals for the final prototype are to deploy the Auto Logger Service on all the C3ISP

subsystems and integrate the C3ISP Logging Library into the C3ISP components. Also, a

Secure Audit Manager product will be installed. We currently are evaluating the open source

Graylog23 product, which will probably meet our needs as a reference auditing platform.

22 Simple Logging Facade for Java, https://www.slf4j.org/

23 Graylog, https://www.graylog.org/

https://www.slf4j.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 91 of 104

9. Updated Data Flow Diagrams
This section illustrates the updated data flows by describing the revised UML sequence

diagrams implemented for the C3ISP Framework at M24. We did also a name change, where

all the actionCTI has been renamed to actionDPO (e.g. createCTI is now createDPO), to make

it clearer that they work on Data Protected Object, which is the bundle of the CTI with the

corresponding DSA.

9.1. Create DPO

This flow describes the operation that an external entity issues when it wants to provide input

data to the C3ISP Framework. With respect to D7.2, we collapsed two operations (the creation

for raw data and the one for normalised data), by allowing a parameter in the API to specify the

corresponding scenario.

The Create DPO (createDPO method) is provided by the ISI API component and its sequence

diagram is reported next:

Figure 65: Create DPO Sequence Diagram

The diagram expresses greater details respect to the previous D7.2 description. In particular,

we can see that the ISI API handles the acquisition of both raw and normalised CTI data (norm

flag in the call24): raw CTI data has to be appropriately formatted before feeding it into C3ISP

(hence the interaction with the Format Adapter) to encode the data in STIX format and, in case

of log data, to format it in CEF, if necessary (1). Once the CTI data is in the proper format, the

ISI checks if the createDPO operation is permitted (per the DSA policies) for the requestor

component (2), then contacts the DSA Adapter for the bundle creation. The Bundle Manager

fetches the UPOL policy (3) corresponding to the specified DSA (metadata parameter in the

createDPO contains a reference to the DSA Id to be used). The Bundle Manager is coordinated

by the Event Handler (see changes described in 5.1) and so there are messages exchanges with

it: in fact, the DSA Adapter Front End sends a message “Bundle Manager Create” (bmc) that

kicks off the Bundle Manager activities (4). Then the Bundle Manager interacts with the Key

and Encryption Manager (part of the CSS subsystem) to create the encrypted bundle (5) that we

call DPO – Data Protected Object (we have one key per DPO, stored in a vault, see Section

5.1.6). It is interesting to show that the identifier of the DPO that will be created is defined by

24 In the final implementation of the Format Adapter, it will be able to automatically detect if the CTI data has to

be specifically formatted or not. See also 5.2.

1

2

2
3

4

5
6

7

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 92 of 104

the DSA Adapter Front End (6). The DPO-Id is finally returned as a result parameter of the

createDPO API (7).

9.2. Read DPO

This flow describes the operation that an external entity issues when it wants to get a data from

the C3ISP Framework: either a previously submitted data, or a shared data by some other entity

being subject to the defined DSA policies evaluation. Like the createDPO operation, with

respect to D7.2, the following sequence diagram shows more details about the readDPO

method, as a result of the developed integration with the Event Handler publish-subscribe

mechanism (see Section 5.1.2).

The Read DPO is provided by the ISI API component and its sequence diagram is reported

next:

Figure 66: Read DPO Sequence Diagram

The main differences are the interaction between the Bundle Manager and the Event Handler,

and the fact that now the DSA policies are bundled within the DPO (and so it is not required to

fetch them from the DSA Manager). The DSA Adapter kicks off the Bundle Manager flow to

retrieve the DPO bundle (1); the Bundle Manager then decrypts the DPO to extract the CTI and

the DSA in the clear (2). Then there is the DSA policy evaluation (including DMOs, if

applicable) (3) before returning the CTI in the clear to the caller (4).

9.3. Delete DPO

This flow describes the operation that an external entity issues when it wants to delete a DPO

from the C3ISP Framework.

1

3

2

4

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 93 of 104

The sequence diagram has been revised and now the deleteDPO uses a readDPO first (by

issuing a “bmr” message (1) to the Event Handler), as reported in the next figure.

Figure 67: Delete DPO Sequence Diagram

Once the DSA policies allows the delete operation (2), a Bundle Manager Delete “bmd”

message is sent to the Event Handler (3), which performs the delete against the DPOS (4).

9.4. Invoke C3ISP analytics service

This flow describes the feature provided by the C3ISP Framework for invoking a generic

analytics service on a DPO (or list of DPOs), given the service name and the DPO-Id (or DPO-

Ids).

The following diagram shows the updated sequence diagram:

Figure 68: Invoke Analytics Service Sequence Diagram

1

2
3

4

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 94 of 104

This workflow has undergone through a quite extensive activity to detail it; however, the

original flow from D7.2 is still the basis, even if it was a simplified version.

In particular, the following changes have to be highlighted:

 The runAnalytics signature allows the specification of “searchCriteria” to find out

the DPO-IDs where the analytics will run over. The criteria are specified by using

the same conventions of the SearchDPO API described in Section 5.4. Additionally,

the runAnalytics can specify directly the list of DPO-IDs or be implemented for each

analytics service (runAnalyticsX, e.g. runAnalyticsSearchDGA);

 The prepareData workflow has been expanded (see the blue box). It is implemented

by the Buffer Manager component (see Section 5.3) and is able to create a “data

lake” properly formatted for the analytics, by evaluating the policies attached to each

DPO that will be part of the analysis;

 The performAnalytics works on the prepared “data lake”;

 When the analytics is over, it submits the result CTI to the C3ISP Framework via a

createDPO (see 9.1) in such a way that it becomes new data for the system. The

DSA has a dedicated section that can contain the specific DSA policies to apply to

the results (i.e. derived objects, see 7.1);

 Once the analytics has completed its job, the temporary data lake can be released

via the releaseData API of the Buffer Manager (it is finally deleted, see 5.3).

As a final note, to keep the diagram to a reasonable simplification level, the DPOS API and

DPOS has been collapsed in a single node, but in reality they are independent components.

9.5. Invoke legacy analytics service

Invoking legacy analytics works much the same as invoking a C3ISP analytics service (see

Section 9.4). The legacy analytics service name will be specified as parameter in the

runAnalytics service call. The IAI API will trigger the prepareData workflow (implemented by

the Buffer Manager) to create a Virtual Data Lake instance and populate it with the requested

CTIs (identified by the DPO-IDs). The VDL-uri (the equivalence of DLB-uri depicted in Figure

68) will be returned to the IAI API, which in turn will pass it to the legacy analytics engine; this

will be supported by specific software component of the Pilot that makes use of the legacy

analytics engine. The legacy analytics engine will then access the VDL directly; the analytics

result will not be submitted to the C3ISP Framework, since legacy analytics do not have the

awareness of this possibility and cannot be updated for that.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 95 of 104

10. Updates on the Development and Test Bed Environments
In the following sections, we describe what has currently been updated or added, in terms of

base hardware/operating system settings and software configuration, to Development and Test

Bed Environments with respect to deliverable D7.2 (section 10) to match the requirements

reported in deliverable D7.1 (sections 3.1 and 3.2).

10.1. Development Environment

10.1.1. Base configuration

There are no changes to the configuration of the VM that hosts the Development environment.

10.1.2. Software configuration

This section reports the status of the development tools mentioned in deliverable D7.1.

The new installed tools are the following:

 Nexus Artifact Repository25 is a centralized repository to manage components

from dev through delivery (binaries, containers, assemblies, and finished goods),

build artefacts, and release candidates in one central location. It supports in

particular requirement [C3ISP-Dev-001]. Nexus, in development environment, is

integrated with Jenkins and Maven. We use it mainly to share common C3ISP

artefacts that are used cross-modules (see next figure). Its access control mechanism

has also been integrated for user authentication and authorisation with the C3ISP

OpenLDAP service. The configured service is available at

https://devc3isp.iit.cnr.it/nexus/.

A sample screenshot is provided in the next figure:

Figure 69: Nexus Web Interface

 Trac26 is a system for bug/issue tracking and management. It addresses in particular

requirement [C3ISP-Dev-004]. We defined on Trac all the C3ISP components and

modules, as shown in Figure 70. The configured service is available at

https://devc3isp.iit.cnr.it/trac/.

25 https://www.sonatype.com/nexus-repository-oss

26 http://trac.edgewall.org/

https://devc3isp.iit.cnr.it/nexus/
https://devc3isp.iit.cnr.it/trac/
https://www.sonatype.com/nexus-repository-oss
http://trac.edgewall.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 96 of 104

Figure 70: Trac C3ISP modules list

We also started using Trac as an internal wiki tool, where we publish technical material

regarding the implementation. Next figure shows a sample:

Figure 71: Trac Wiki pages

10.2. Test Bed Environment

10.2.1. Base configuration

The configuration for each machine of the test bed environment is illustrated on Table 39

under the Specifications column. In addition, all machines are equipped with Ubuntu 16.04

LTS as operating system.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 97 of 104

Table 39 – C3ISP subsystems on Test Bed Environment

Subsystem Virtual Machine Specifications Notes

DSA

Manager

dsamgrc3isp.iit.cnr.it vCPU = 2

Ram = 4GB

Storage = 40GB

This virtual machine hosts

the DSA Manager

subsystem.

ISI isic3isp.iit.cnr.it vCPU = 2

Ram = 6GB

Storage = 100GB

This virtual machine hosts

the Information Sharing

Infrastructure subsystem.

IAI iaic3isp.iit.cnr.it Cores = 40

Ram = 256GB

Storage = 6TB

This server hosts the

Information Analytics

Infrastructure subsystem.

We decided to install this

subcomponent on a

physical server with high

performance due to the

high load, for instance the

homomorphic encryption

analytics.

CSS kec3isp.iit.cnr.it vCPU = 8

Ram = 6GB

Storage = 20GB

This virtual machine hosts

at M24 the Key and

Encryption Manager

component. We plan to

install shortly also the

Secure Audit Manager

component (off-the-shelf-

product).

MISP mispc3isp.iit.cnr.it vCPU = 2

Ram = 4GB

Storage = 20GB

This virtual machine hosts

the components that will

be used to interface with

the Open Source Threat

Intelligence Platform &

Open Standards for Threat

Information Sharing.

ISP Pilot ispc3isp.iit.cnr.it vCPU = 4

Ram = 4GB

Storage = 60GB

This virtual machine hosts

all services and

components for the ISP

Pilot that at M24 are used

to interact with the C3ISP

Framework, and in

particular with the IAI.

It hosts the local ISI due to

the C3ISP Hybrid

deployment model used by

the pilot.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 98 of 104

CERT Pilot 90.147.82.10 vCPU = 4

Ram = 4GB

Storage = 60GB

This virtual machine hosts

all services and

components for the CERT

Pilot that at M24 are used

to interact with the C3ISP

Framework.

It hosts the local ISI due to

the C3ISP Hybrid

deployment model used by

the pilot.

Enterprise

Pilot

entc3isp.iit.cnr.it vCPU = 4

Ram = 4GB

Storage = 60GB

This virtual machine hosts

all services and

components for the

Enterprise Pilot that at

M24 are used to interact

2with the C3ISP

Framework, and in

particular with the IAI.

SME Pilot smec3isp.iit.cnr.it vCPU = 4

Ram = 4GB

Storage = 60GB

This virtual machine hosts

all services and

components for the SME

Pilot that at M24 are used

to interact with the C3ISP

Framework.

It hosts the local ISI due to

the C3ISP Hybrid

deployment model used by

the pilot.

10.2.2. Software configuration

The new installed tools are the following:

 MySQL27 is a Relational database management system. It is used for:

o Managing users and DSAs for the DSA Editor (Profile Store);

o Implementing VDL for some legacy analytics engines;

o Storing keys for HashiCorp Vault, used by K&E Manager;

o Backend for DGA analytics (see D8.3);

 MongoDB28 is a non-relational (No-SQL) document-oriented database for storing

data in flexible, JSON-like documents. It is used for:

o Store DPO metadata to be used together with the DPOS;

27 https://www.mysql.com/

28 https://www.mongodb.com/

https://www.mongodb.com/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 99 of 104

o DSA Store;

 Apache Hadoop Distributed File System (HDFS)29 is a distributed Java-based file

system for storing large volumes of data across multiple machines. It is used for:

o Storing VDL for legacy analytics services;

o Storing Data Lake Buffers (created by the Buffer Manager) for C3ISP

analytics services;

o DPOS.

Table 3 contains also software version details.

29 https://hadoop.apache.org/

https://hadoop.apache.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 100 of 104

11. Conclusions
This deliverable has described the implemented first version of the C3ISP Framework. We are

continuously tuning the implementation by looking at the Pilots integration activities. In fact,

the validation phase that will conclude at M26 is an important milestone also to verify that the

implemented architecture is completely sound and meets correctly the Pilot requirements and

needs. We will use the outcomes of that activity, to refine the components developments, fix

defects and improve the security and usability of the C3ISP Framework.

In fact, we have some activities already on the short-term roadmap, like the activation of the

Service Usage Control Adapter and the setup of the Secure Audit Manager, which will provide

additional security measures to the C3ISP Framework. We also need to work on a stricter

integration with the Identity Manager component, in particular regarding the user authentication

and new attributes for policy evaluation, in order to meet the requirements of the DSA rules

that will be refined by the Pilots. Further, as the analytics services will improve and new

services will be possibly added, we will work on improving the performances of the C3ISP

Framework, should any bottleneck arises during the Pilot testing and integration activities.

Testing of the various deployment models, physically distributed and hybrid will increase

confidence in detecting performance results.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 101 of 104

12. Appendix 1: Swagger API URLs
The following tables shows the published URLs for inspecting the API signature as provided

by Swagger:

Table 40 – Swagger URLs

Subsystem Component Module URL

ISI
DSA

Adapter

DSA Adapter

Front End

https://isic3isp.iit.cnr.it/dsa-adapter-frontend/swagger-

ui.html

ISI
DSA

Adapter

Event

Handler
https://isic3isp.iit.cnr.it/event-handler/swagger-ui.html

ISI
DSA

Adapter

Continuous

Authorization

Engine

https://isic3isp.iit.cnr.it/UsageControlFramework/swagger-

ui.html

ISI
DSA

Adapter

Continuous

Authorization

Engine/Multi

Resource

Handler

https://isic3isp.iit.cnr.it/multi-resource-handler/swagger-

ui.html

ISI
DSA

Adapter

Obligation

Engine

https://isic3isp.iit.cnr.it/trigger-engine/swagger-ui.html

https://isic3isp.iit.cnr.it/action-engine/swagger-ui.html

ISI
DSA

Adapter
DMO Engine https://isic3isp.iit.cnr.it/dmo-engine/swagger-ui.html

ISI
DSA

Adapter

Bundle

Manager
https://isic3isp.iit.cnr.it/bundle-manager/swagger-ui.html

ISI
Format

Adapter
- https://isic3isp.iit.cnr.it:9443/format-adapter/api-docs/

ISI
Buffer

Manager
- https://isic3isp.iit.cnr.it/buffer-manager/swagger-ui.html

ISI DPOS API - https://isic3isp.iit.cnr.it/dpos-api/swagger-ui.html

ISI API - https://isic3isp.iit.cnr.it/isi-api/swagger-ui.html

IAI IAI API - https://iaic3isp.iit.cnr.it/iai-api/swagger-ui.html

IAI

C3ISP

Analytics

Engine

FHE

Analytics

https://iaic3isp.iit.cnr.it/fhe-conn-malicious-host/swagger-

ui.html

DSA

Manager
DSA Editor - Web GUI: https://dsamgrc3isp.iit.cnr.it/DSAEditor/

DSA

Manager

DSA

Mapper
-

https://dsamgrc3isp.iit.cnr.it:8443/dsa-mapper/swagger-

ui.html

DSA

Manager

DSA

Manager

Gateway

- https://dsamgrc3isp.iit.cnr.it/DSAAPI/swagger-ui.html

DSA

Manager

DSA Store

API
- https://dsamgrc3isp.iit.cnr.it/dsa-store-api/swagger-ui.html

CSS

Key and

Encryption

Manager

K&E Core
https://kec3isp.iit.cnr.it/ke-core-manager-api/swagger-

ui.html

https://isic3isp.iit.cnr.it/dsa-adapter-frontend/swagger-ui.html
https://isic3isp.iit.cnr.it/dsa-adapter-frontend/swagger-ui.html
https://isic3isp.iit.cnr.it/event-handler/swagger-ui.html
https://isic3isp.iit.cnr.it/UsageControlFramework/swagger-ui.html
https://isic3isp.iit.cnr.it/UsageControlFramework/swagger-ui.html
https://isic3isp.iit.cnr.it/multi-resource-handler/swagger-ui.html
https://isic3isp.iit.cnr.it/multi-resource-handler/swagger-ui.html
https://isic3isp.iit.cnr.it/trigger-engine/swagger-ui.html
https://isic3isp.iit.cnr.it/action-engine/swagger-ui.html
https://isic3isp.iit.cnr.it/dmo-engine/swagger-ui.html
https://isic3isp.iit.cnr.it/bundle-manager/swagger-ui.html
https://isic3isp.iit.cnr.it:9443/format-adapter/api-docs/
https://isic3isp.iit.cnr.it/buffer-manager/swagger-ui.html
https://isic3isp.iit.cnr.it/dpos-api/swagger-ui.html
https://isic3isp.iit.cnr.it/isi-api/swagger-ui.html
https://iaic3isp.iit.cnr.it/iai-api/swagger-ui.html
https://iaic3isp.iit.cnr.it/fhe-conn-malicious-host/swagger-ui.html
https://iaic3isp.iit.cnr.it/fhe-conn-malicious-host/swagger-ui.html
https://dsamgrc3isp.iit.cnr.it/DSAEditor/
https://dsamgrc3isp.iit.cnr.it:8443/dsa-mapper/swagger-ui.html
https://dsamgrc3isp.iit.cnr.it:8443/dsa-mapper/swagger-ui.html
https://dsamgrc3isp.iit.cnr.it/DSAAPI/swagger-ui.html
https://dsamgrc3isp.iit.cnr.it/dsa-store-api/swagger-ui.html
https://kec3isp.iit.cnr.it/ke-core-manager-api/swagger-ui.html
https://kec3isp.iit.cnr.it/ke-core-manager-api/swagger-ui.html

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 102 of 104

CSS

Key and

Encryption

Manager

DPO Key

Manager
https://kec3isp.iit.cnr.it/dpos-key/swagger-ui.html

CSS

Key and

Encryption

Manager

FHE Key

Manager
https://kec3isp.iit.cnr.it/fhe-keys/swagger-ui.html

CSS

Key and

Encryption

Manager

DPO

Encryption

Manager

https://kec3isp.iit.cnr.it/dpos-encryption/swagger-ui.html

CSS

Key and

Encryption

Manager

FHE

Encryption

Manager

https://kec3isp.iit.cnr.it/fhe-encryption/swagger-ui.html

https://kec3isp.iit.cnr.it/dpos-key/swagger-ui.html
https://kec3isp.iit.cnr.it/fhe-keys/swagger-ui.html
https://kec3isp.iit.cnr.it/dpos-encryption/swagger-ui.html
https://kec3isp.iit.cnr.it/fhe-encryption/swagger-ui.html

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 103 of 104

13. References
This section lists the references used throughout the document:

[1] RESTful services:

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm, retrieved on

Sep 11th, 2018

[2] Swagger: http://swagger.io, retrieved on Sep 11th, 2018

[3] Swagger UI: http://swagger.io/swagger-ui, retrieved on Sep 11th, 2018

[4] Swagger Editor: https://editor.swagger.io/, retrieved on Sep 11th, 2018

[5] YAML data serialisation standard: http://yaml.org/spec/1.2/spec.html, retrieved on

Sep 11th, 2018

[6] Springfox: http://springfox.github.io/springfox/docs/current, retrieved on Sep 11th,

2018

[7] Spring Boot: http://projects.spring.io/spring-boot, retrieved on Sep 11th, 2018

[8] JAX-RS: https://github.com/jax-rs, retrieved on Sep 11th, 2018

[9] Clements, Paul, and Linda Northrop. Software product lines: practices and patterns.

Vol. 3. Reading: Addison-Wesley, 2002

[10] Carpov, Sergiu, Paul Dubrulle, and Renaud Sirdey. "Armadillo: a compilation chain

for privacy preserving applications." Proceedings of the 3rd International Workshop

on Security in Cloud Computing. ACM, 2015

[11] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical Fully Homomorphic

Encryption." IACR Cryptology ePrint Archive 2012 (2012): 144

[12] Brakerski, Zvika. "Fully homomorphic encryption without modulus switching from

classical GapSVP." Advances in cryptology–crypto 2012. Springer, Berlin, Heidelberg,

2012. 868-886

[13] Gentry, Craig, Shai Halevi, and Nigel P. Smart. "Fully homomorphic encryption with

polylog overhead." Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012

[14] Bajard, Jean-Claude, et al. "Efficient reductions in cyclotomic rings-Application to

Ring-LWE based FHE schemes." International Conference on Selected Areas in

Cryptography. Springer, Cham, 2017

[15] Jäschke, Angela, and Frederik Armknecht. "Field Work: Choosing the Best Encoding

of Numbers for FHE Computation." Proc. of CANS. 2017

[16] Chillotti, Ilaria, et al. "Faster fully homomorphic encryption: Bootstrapping in less than

0.1 seconds." International Conference on the Theory and Application of Cryptology

and Information Security. Springer, Berlin, Heidelberg, 2016

[17] Chillotti, Ilaria, et al. Improving TFHE: faster packed homomorphic operations and

efficient circuit bootstrapping. Cryptology ePrint Archive, Report 2017/430, 2017

[18] Chillotti, Ilaria, et al. "Faster packed homomorphic operations and efficient circuit

bootstrapping for TFHE." International Conference on the Theory and Application of

Cryptology and Information Security. Springer, Cham, 2017

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://swagger.io/
http://swagger.io/swagger-ui
https://editor.swagger.io/
http://yaml.org/spec/1.2/spec.html
http://springfox.github.io/springfox/docs/current
http://projects.spring.io/spring-boot

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.3

Page 104 of 104

[19] Gentry, Craig, Amit Sahai, and Brent Waters. "Homomorphic encryption from learning

with errors: Conceptually-simpler, asymptotically-faster, attribute-based." Advances in

Cryptology–CRYPTO 2013. Springer, Berlin, Heidelberg, 2013. 75-92

[20] Alperin-Sheriff, Jacob, and Chris Peikert. "Faster bootstrapping with polynomial error."

International Cryptology Conference. Springer, Berlin, Heidelberg, 2014

[21] Ducas, Léo, and Daniele Micciancio. "FHEW: bootstrapping homomorphic encryption

in less than a second." Annual International Conference on the Theory and Applications

of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2015

[22] Jaehong Park, R. S. (2002). Towards usage control models: beyond traditional access

control. SA CMA T, (pp. 57 - 64)

[23] RFC 6749, OAuth2: https://tools.ietf.org/html/rfc6749, http://oauth.net/2/, retrieved on

Sep 11th, 2018

[24] SPID – https://www.spid.gov.it, retrieved on Sep 11th, 2018

https://tools.ietf.org/html/rfc6749
http://oauth.net/2/d
https://www.spid.gov.it/

	Executive Summary
	1. Introduction
	1.1. Overview
	1.2. Deliverable Structure
	1.3. Definitions and Abbreviations

	2. High-Level Architecture at M24
	3. Delivered C3ISP Software
	3.1. Software artefacts
	3.2. Pre-requisites
	3.3. Installation procedures
	3.3.1. ISI – Information Sharing Infrastructure
	3.3.2. IAI – Information Analytics Infrastructure
	3.3.3. DSA Manager
	3.3.4. CSS – Common Security Services
	3.3.5. Deployment models

	3.4. Operational procedures
	3.4.1. ISI API
	3.4.2. IAI API
	3.4.3. DSA Editor

	4. First version of developed C3ISP platform
	4.1. System Integration Methodology
	4.2. Integration process
	4.2.1. Integration step 1 – Identification of the communication interfaces
	4.2.2. Integration step 2 – Agreement about the responsibilities
	4.2.3. Integration step 3 – Definition of the communication interfaces
	4.2.4. Integration step 4 – Setup of the integration environment
	4.2.5. Integration step 5 – Point-to-point integration tests
	4.2.6. Integration step 6 – Multi-point integration tests
	4.2.7. Integration step 7 – Final system scenarios tests

	5. Subsystem Updates & Status: ISI – Information Sharing Infrastructure
	5.1. DSA Adapter
	5.1.1. DSA Adapter Front End
	5.1.1.1. Implementation and Integration Status
	5.1.1.2. Published APIs

	5.1.2. Event Handler
	5.1.2.1. Implementation and Integration Status
	5.1.2.1. Published APIs

	5.1.3. Continuous Authorization Engine
	5.1.3.1. Implementation and Integration Status
	5.1.3.2. Published APIs

	5.1.4. Obligation Engine
	5.1.4.1. Implementation and Integration Status
	5.1.4.2. Published APIs

	5.1.5. DMO Engine
	5.1.5.1. Implementation and Integration Status
	5.1.5.2. Published APIs

	5.1.6. Bundle Manager
	5.1.6.1. Implementation and Integration Status
	5.1.6.2. Published APIs

	5.2. Format Adapter
	5.2.1. Implementation and Integration Status
	5.2.2. Published APIs

	5.3. Buffer Manager
	5.3.1. Implementation and Integration Status
	5.3.2. Published APIs

	5.4. Data Protected Object Store API
	5.4.1. Implementation and Integration Status
	5.4.2. Published APIs

	5.5. Data Protected Object Store
	5.5.1. Implementation and Integration Status

	5.6. ISI API
	5.6.1. Implementation and Integration Status
	5.6.2. Published APIs

	6. Subsystem Updates & Status: IAI – Information Analytics Infrastructure
	6.1. C3ISP Analytics Engine
	6.1.1. Implementation and Integration Status
	6.1.2. FHE Analytics
	6.1.2.1. Implementation and Integration Status
	6.1.2.2. Published APIs

	6.1.3. Interactive 3D Visualisation
	6.1.3.1. Implementation and Integration Status

	6.2. Service Usage Control Adapter
	6.2.1. Implementation and Integration Status

	6.3. Interface to Legacy Analytics Engines
	6.3.1. Implementation and Integration Status

	6.4. Virtual Data Lake
	6.4.1. Implementation and Integration Status

	6.5. IAI API
	6.5.1. Implementation and Integration Status
	6.5.2. Published APIs

	7. Subsystem Updates & Status: DSA Manager
	7.1. DSA Editor
	7.1.1. Implementation and Integration Status

	7.2. DSA Mapper
	7.2.1. Implementation and Integration Status
	7.2.2. Published APIs

	7.3. DSA Store API
	7.3.1. Implementation and Integration Status
	7.3.2. Published APIs

	7.4. DSA Manager Gateway
	7.4.1. Implementation and Integration Status
	7.4.2. Published APIs

	7.5. DSA Store
	7.5.1. Implementation and Integration Status

	8. Subsystem Updates: CSS – Common Security Services
	8.1. Identity Manager
	8.1.1. Implementation and Integration Status

	8.2. Key and Encryption Manager
	8.2.1. Implementation and Integration Status
	8.2.2. K&E Core
	8.2.2.1. Published APIs

	8.2.3. Key Management: Key Generation & Access
	8.2.3.1. DPO Key Management
	8.2.3.2. Published APIs
	8.2.3.3. FHE Key Management
	8.2.3.4. Published APIs

	8.2.4. Encryption and decryption
	8.2.4.1. DPO Encryption and decryption using AES
	8.2.4.2. Published APIs
	8.2.4.3. FHE Encryption and Decryption (based on FV scheme)
	8.2.4.4. Published APIs

	8.3. Secure Audit Manager
	8.3.1. Implementation and Integration Status

	9. Updated Data Flow Diagrams
	9.1. Create DPO
	9.2. Read DPO
	9.3. Delete DPO
	9.4. Invoke C3ISP analytics service
	9.5. Invoke legacy analytics service

	10. Updates on the Development and Test Bed Environments
	10.1. Development Environment
	10.1.1. Base configuration
	10.1.2. Software configuration

	10.2. Test Bed Environment
	10.2.1. Base configuration
	10.2.2. Software configuration

	11. Conclusions
	12. Appendix 1: Swagger API URLs
	13. References

