
H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 1 of 120

26/09/2018

Version 1.0

Due date of deliverable: 30/09/2018

Actual submission date: 30/09/2018

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

C3ISP
Collaborative and Confidential Information Sharing and Analysis for Cyber

Protection

Components First Maturation

WP8 – C3ISP Data Sharing, Analytics and Crypto

Technology Maturation

D8.2

Responsible partner: CEA

Editor: Thanh Hai Nguyen

E-mail address: thanhhai.nguyen@cea.fr

The C3ISP Project is supported by funding under the Horizon 2020

Framework Program of the European Commission DS 2015-1, GA #700294

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 2 of 120

Authors: T.H. Nguyen, V. Herbert (CEA), M. Manea, P. Ciampoli, M. Russo (HPE), I.

Herwono (BT), R. de Lemos, D. Chadwick, J. Ziembicka, W. Fan (UNIKENT), F.

Di Cerbo, J. Boehler (SAP), P. Mori, A. Saracino, G. Costantino, I. Matteucci

(CNR), J. Dobos, C. Wong (3D REPO), R. Hamouda (GPS), S. Tranquillini, A.

Arighi (CHINO)

Approved by: C. Wong, J. Dobos (3DREPO), P. Niamadio (GPS)

Revision History

Version Date Name Partner Sections Affected / Comments

0.1 20/07/2018 Paolo Mori /

Thanh Hai

Nguyen

CNR / CEA Initial ToC

 02/08/2018 Ian Herwono BT Section 6 – new contents

0.2 22/08/2018 Jonas Böhler SAP Section 7 intro, 7.1, 7.2 – new content

 27/08/2018 Thanh Hai

Nguyen

CEA Section 5.10 – added Bundle Manager

description

 30/08/2018 Paolo Mori CNR Section 5.7 – added component

description, maturation status and

requirements

 04/09/2018 Joanna

Ziembicka

UNIKENT Section 5.2 - added DPOS component

description

 07/09/2018 Ilaria Matteucci CNR Section 4.2 – added DSA Mapper

description, maturation, requirement

status at M24 and First release

description

0.3 07/09/2018 Gianpiero

Costantino

CNR Section 6.1 – added monitoring DGA

analytic description, maturation, and

First release description

 10/09/2018 Joanna

Ziembicka

UNIKENT Section 5.2 – added first release of the

component description

0.4 11/09/2018 Ian Herwono BT Section 7.3, 7.4 – added requirement

and source code description

Section 9 – added full text

 12/09/2018 Jonas Böhler SAP Section 7 – new content for first release

0.5 12/09/2018 Vincent Herbert CEA Section 8.2 – added source code

description

0.6 13/09/2018 Andrea Saracino CNR Section 6.1 – added email spam

detection analytic description,

maturation, and First release description

0.7 14/09/2018 Anrdrea

Saracino,

Antonio La

Marra

CNR Section 5.7 – added First release

description

 19/09/2018 Paolo Mori /

Andrea

CNR Section 5.7, 6, 6.1

0.8 20/09/2018 Thanh Hai

Nguyen

CEA Merged version from partner

contributions

 25/09/2018 Thanh Hai

Nguyen

CEA Merged version from internal reviewers

3DREPO and GPS, updated from

HPE’s, SAP’s, CHINO’s contributions

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 3 of 120

0.9 26/09/2018 Thanh Hai

Nguyen

CEA From CNR – add missing introduction

text and references

1.0 26/09/2018 Thanh Hai

Nguyen

CEA Finish for integrating

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 4 of 120

1. Executive Summary
Deliverable 8.2 is the second output of Work Package 8, “C3ISP Data Sharing, Analytics and

Crypto Technology Maturation” due at M24. This deliverable describes the first software

releases of the components in the C3ISP framework: the source code description, a potential

improvement for the next version and an accompanying document (this document).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 5 of 120

Table of contents

1. Executive Summary ... 4

2. Introduction .. 8

2.1. Overview ... 8

2.2. Deliverable Structure ... 8

3. High-Level Architecture .. 9

4. Data Sharing Agreements ... 10

4.1. DSA Editor .. 10

4.1.1. Component description .. 10

4.1.2. Maturation status .. 15

4.1.3. Addressing specific privacy requirements in DSAs ... 23

4.1.4. Requirement Analysis at M24 .. 23

4.1.5. First release of the component ... 25

4.2. DSA Mapper .. 31

4.2.1. Component description .. 31

4.2.2. Maturation status .. 32

4.2.3. Requirement Analysis at M24 .. 33

4.2.4. First release of the component ... 34

5. Data collection and Usage Enforcement: The Information Sharing Infrastructure (ISI) . 37

5.1. Information Sharing Infrastructure API .. 37

5.1.1. Component description .. 37

5.1.2. Maturation status .. 37

5.1.3. Requirement Analysis at M24 .. 37

5.1.4. First release of the component ... 38

5.2. Data Protected Object Storage (DPOS) ... 42

5.2.1. Component description .. 42

5.2.2. Maturation status .. 42

5.2.3. Requirement Analysis at M24 .. 43

5.2.4. First release of the component ... 43

5.3. Buffer –Manager .. 48

5.3.1. Component description .. 48

5.3.2. Maturation status .. 49

5.3.3. Requirement Analysis at M24 .. 49

5.3.4. First release of the component ... 49

5.4. Format Adapter .. 53

5.4.1. Component description .. 53

5.4.2. Maturation status .. 53

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 6 of 120

5.4.3. Requirement Analysis at M24 .. 54

5.4.4. First release of the component ... 54

5.5. DSA Adapter Frontend .. 56

5.5.1. Component description .. 56

5.5.2. Requirement Analysis at M24 .. 57

5.5.3. First release of the component ... 58

5.6. Event Handler .. 62

5.6.1. Component description .. 62

5.6.2. Maturation status .. 62

5.6.3. Requirement Analysis at M24 .. 62

5.6.4. First release of the component ... 63

5.7. Continuous Authorization Engine ... 67

5.7.1. Component description .. 67

5.7.2. Maturation status .. 67

5.7.3. Requirement Analysis at M24 .. 69

5.7.4. First release of the component ... 71

5.8. Obligation Engine .. 78

5.8.1. Component description .. 78

5.8.2. Maturation status .. 78

5.8.3. Requirement Analysis at M24 .. 79

5.8.4. First release of the component ... 80

5.9. Data Manipulation Operation Engine .. 84

5.9.1. Component description .. 84

5.9.2. Maturation status .. 84

5.9.3. Requirement Analysis at M24 .. 85

5.9.4. First release of the component ... 85

5.10. Bundle Manager ... 88

5.10.1. Component description ... 88

5.10.2. Maturation status .. 88

5.10.3. First release of the component .. 89

6. Collaborative Data Analytics: The Information Analytics Infrastructure (IAI) 92

6.1. Specific Data Analytics Examples .. 92

6.1.1. Component description .. 92

6.1.2. Maturation status .. 92

6.1.3. Requirement Analysis at M24 .. 93

6.1.4. First release of the component ... 93

7. Visualization of Security Analytics .. 99

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 7 of 120

7.1. Component description .. 99

7.2. Maturation status ... 99

7.3. Requirement Analysis at M24 ... 100

7.4. First release of the component ... 101

8. Anonymization and Homomorphic Encryption Algorithms .. 102

8.1. Anonymization Algorithms ... 102

8.1.1. Component description .. 102

8.1.2. Maturation status .. 102

8.1.3. Requirement Analysis at M24 .. 103

8.1.4. First release of the component ... 104

8.2. Homomorphic Encryption Algorithms .. 106

8.2.1. Component description .. 106

8.2.2. Maturation status .. 107

8.2.3. Requirement Analysis at M24 .. 108

8.2.4. First release of the component ... 109

9. Managed Security Services .. 114

9.1. Component description .. 114

9.2. Maturation status ... 115

9.3. Requirement Analysis at M24 ... 115

9.4. First release of the component ... 115

10. Conclusions ... 117

11. References ... 118

Appendix 1. DSA parent ontology for DSA Editor .. 120

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 8 of 120

2. Introduction

2.1. Overview

This deliverable is the second output of WP8, “C3ISP Data Sharing, Analytics and Crypto

Technology Maturation” due at M24. WP8’s main goal is the maturation of a set of tools and

technologies that are provided by the C3ISP partners and that can be exploited for the

implementation of the Information Sharing Infrastructure (ISI) and of the Information

Analysis Infrastructure (IAI) of the C3ISP Framework.

For each of the tools provided by the C3ISP partners, this document provides: i) a description

of the new functions developed in the last year, explaining why they are needed in C3ISP,

taking as reference the maturation we promised at Y1 (where possible); ii) a description of the

first release of the component, including implementation details.

2.2. Deliverable Structure

This document is structured as follows. Section 2, for the convenience of the readers, reports a

high-level view of the architecture of the C3ISP Framework. For a detailed description of the

architecture, of its components and of the interactions among them please refer to D7.3. Each

section from Section 3 to Section 8 covers one of the functionalities required in the C3ISP

Framework and give the maturation status at M24 of the components using related tools

provided by the C3ISP partner. Finally, Section 9 draws the conclusions.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 9 of 120

3. High-Level Architecture
This section briefly recalls the new version of the high level C3ISP Framework reference

architecture (shown in Figure 1) that has been defined at month 24. The main aim of this

section is to give a quick overview of the main components of the architecture and a brief

description of their main functionalities. A very detailed description of the components of the

architecture, of their functionalities, of their interactions, and of the workflow of the main

operations of the C3ISP Framework can be found in D7.3.

The main aim of recalling the C3ISP Framework reference architecture here is that in the

following, we describe each of the tools that are being provided by the C3ISP partners, and

for each of them this document specifies which of the components shown in Figure 1 can

benefit from the tool.

Figure 1: C3ISP high-level architecture – version Month 24, taken from D7.3 in Section 2

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 10 of 120

4. Data Sharing Agreements
A Data Sharing Agreement (DSA) is a contract regulating the sharing of data among entities

(organizations, individuals, etc.). In the C3ISP scenario, DSAs are defined by the CTI

producers to regulate the usage of the information in the CTIs when they shared in the data

analytics processes. These DSAs concern both the CTIs shared by the CTI Producers, which

are used as input of the analytics processes, and the new CTIs resulting from the analytics

computation. In particular, DSAs express constraints on the shared information in terms of

Data Manipulation Operations (DMO), i.e., the operations required to pre-process the shared

information before its usage (e.g. to anonymize the input data before processing them or the

analysis results before sharing them with the other Prosumers, and Analytics operations in

order to permit or forbid the execution of an analytic service of the shared data depending on

certain conditions.

Summarizing, DSAs define whether the shared CTI can be exploited to compute a given

analytic operation, which manipulation operations must be performed on the related data

before performing the elaboration of the analytics engine, and which manipulation operations

must be performed on the results before they can be shared with the other Prosumers.

4.1. DSA Editor

4.1.1. Component description

The DSA Editor is the component used for authoring Data Sharing Agreements (DSAs), i.e.

the “contracts” that specify the agreed set of policies (also called rules) used for regulating the

CTI data sharing and analysis functionalities provided by the C3ISP Framework. The DSA

Editor provides an interactive approach that takes advantage of the ontology [2] technology to

guide the user in the definition of the DSA policies. When the user is creating a policy (see

Figure 2), the application suggests (through a pop-up window) terms and actions on these

terms, which are compliant with a predefined ontology (called vocabulary), defining the

semantics of the rules. This effectively helps the user write sound rules, like in the following

example where the user is writing “IF a Subject has Role” and the pop-up helps completion of

the sentence with the correct terms:

Figure 2: Steps to write a policy are interactively guided during the editing process. Only the relevant

terms and actions are shown to the user helping him/her in defining sound rules. In this case, thanks to the

ontology, the property “hasRole” accepts the terms “Admin” or “Analyst” only.

The vocabulary used by the DSA Editor is an ontology written in the Ontology Web

Language (OWL1). The vocabulary describes the usage context in which the DSA will be

1https://www.w3.org/OWL/

https://www.w3.org/OWL/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 11 of 120

used; for example, sharing CTI data might use different terms, actions and properties than

those needed when sharing health data. For this reason, the DSA Editor supports using

different vocabularies, i.e. different actions and terms and how they are related to each other.

Figure 3 shows part of the ontology showing the terms used in the example reported in Figure

2.

Figure 3: Part of an OWL ontology corresponding to what is shown in Figure 2, as edited in the open

source Protégé2ontology editor.

As seen in the previous example, to define the policies we use a high-level language very

close to the natural language. This language is based on the formal language called CNL –

Controlled Natural Language[1] and allows writing easily comprehensible (by humans)

sentences about the policies we want to express, yet having them “formal enough” to be

processed by a machine.

The DSA Editor allows the user to define authorisations, obligations and prohibitions

policies. These are specific types of rules to express statements respectively about what an

entity can/cannot do, must do, and must not do.

The ontology to be used as vocabulary in the DSA Editor must import a parent ontology

called upper_vocabulary.owl (included in the Appendix 1), since the policies are processed by

a built-in parser that needs a predefined structure. The “upper vocabulary” builds this basic

structure of the policies, which are made by two classes defining the main entities of the

policies domain: Action and Term. Additional terms and actions must be defined as subclasses

of these existing classes in any vocabulary that will be created.

In the DSA Editor, the Term (and its subclasses) is used as subject or object in the policies

and the Action (and its subclasses) as verb, according to the following syntax (declared in the

upper_vocabulary.owl through two properties):

a Term CAN/CANNOT/MUST Action a Term

For example:

a Subject CAN/CANNOT/MUST Read a Data

where Subject and Data are subclasses of Term and Read is subclass of Action.

Additional properties can be defined in the vocabulary in order to support conditional clauses

(if-clauses) in the policies, according to the following syntax:

IF a Term hasProperty a Term THEN a Term CAN/CANNOT/MUST Action a Term

For example:

2https://protege.stanford.edu/

https://protege.stanford.edu/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 12 of 120

IF a Subject hasRole Prosumer THEN a System CAN Read a Data

Where Prosumer and System are subclasses of Term and hasRole is a property with Domain

Subject and Range Prosumer.

Detailed screenshots of the tools are reported in Section 4.1.5 (First release of the

component).

The DSA Editor is part of the DSA Manager subsystem and has the role of allowing users to

define the rules for CTI data sharing and analysis that will be interpreted and enforced by

other components running in the C3ISP Framework (in particular the DSA Adapter, see

D7.2).

At the high-level, the DSA Editor defines a two-step editing workflow process. First a DSA

called Template is created (step 1). We can consider a DSA Template as a list of predefined

rules and a set of DSA Templates as a library of available rules to choose from. Starting from

a DSA Template, a DSA instance is created (step 2). The DSA instance is what we simply

call DSA and inherits all the rules defined in the DSA Template; further rules can be added to

the DSA instance to complete the DSA. Rules inherited from the DSA Template cannot be

changed: the rationale behind that is segregation of responsibilities. DSA Templates should

contain rules that must always be there (e.g. legal rules), maybe authored by a person with a

legal background or a subject matter expert.

As the DSA moves in the editing workflow process, it may assume different states as the

following state diagram summarises:

Figure 4: DSA State Diagram, refined with respect to what was reported in D8.1.

At the beginning of the editing process, a DSA Template is created and set to the “Template”

state. Starting from the DSA Template, further rules can be added to create a new DSA (the

instance): this moves the DSA into the “Customised” state. During both editing phases, the

user can periodically save their work, before moving to other states.

Once the editing is completed, the user selects to move the DSA (instance) to the

“Completed” state: it means that the DSA has been finalised and can be translated to its

enforceable representation (see DSA Mapper in section 4.2). When the DSA is mapped, it is

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 13 of 120

marked as “Available”, ready to be used for protecting data (i.e. to be paired with the CTI

data).

During its lifecycle, a DSA can be “Revoked” (by the user or some other entity) or can be

“Expired”, according to a validity period (i.e. a starting date/end date) specified when

created, beyond which it is no more applicable to the data. An “Available” DSA might also be

“Updated”, even if it has been already been used (i.e. paired with data). To properly manage

these cases, the user can specify policies to express what happens when the DSA is revoked,

expires or is being updated (see Figure 5). The behaviour for the three cases can be selected

by specifying a “Deny all” policy (data access is forbidden), “Deny all and Delete now” (data

access is forbidden and data will be deleted upon access), and “Delete in a specified period”

(data access is forbidden, but data will be deleted after the specified number of days).

Figure 5: The list of policies the user can select from to manage the “Expired”, “Updated”, and

“Revoked” states.

In addition to the rules, the DSA also keeps metadata information to better define its

context: it specifies the purpose of the data sharing (Purpose), the type of data involved

(Data Classification), the DSA validity time interval (Validity) and the parties participating

to the agreement (Parties), see Figure 6. Since the DSA Template is more generic than a DSA

instance, some of these metadata might be specified at DSA Template creation time for

certain use cases, while others might be defined during the DSA creation phase.

Figure 6: DSA metadata fields.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 14 of 120

The DSA Editor allows using a Term across policies; it means that the same Term can be used

in several policies indicating a reference (Figure 7) to it while defining policy:

Figure 7: To create a reference between Terms, a user has to select REFERENCE in the pop-up guiding

window.

A specific option (REFERENCE) in the provided pop-up is available for this purpose that,

when selected, hints the available terms (highlighted in green, see Figure 8) that can be

selected for completing the policy:

Figure 8: In this case the user is writing “IF a Subject hasId” and wants to use the same Term as in the

circled policy (“a Identifier”). So the user after clicking on REFERENCE, can select the Term highlighted

in green (“a Identifier”) to create the reference.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 15 of 120

The result of selecting a reference in the user interface is to add “that” in the policy before the

referenced Term, as shown in Figure 9:

Figure 9: References in the user interface; “that Identifier” points to “a Identifier” in the policy at the top.

The DSA Editor offers also a feature to graphically show all the defined references.

Policies defined using the DSA Editor are saved in the DSA Store (as an XML file).

4.1.2. Maturation status

Previous deliverable D8.1 stated we plan to reach TRL (Technology Readiness Level) 6 by

working on the following improvements:

- Define and support new vocabularies for the C3ISPpilots’ context, with particular

attention to the legal aspects related to the security of the information sharing;

- Support definition of Data Manipulation Operations (DMOs) (pre/post-processing

rules) [it copies the requirements of C3ISP-Fun-DS-011 and C3ISP-Fun-DA-002

described in D7.1];

- Support for Data Analytics Operations [it meets C3ISP-Fun-DA-001 requirement];

- Support notifications for results [it meets C3ISP-Fun-DS-009 requirement];

- Improvements on the DSA Editor usability [it meets C3ISP-Usa-002 requirement].

In the following sections, we describe the reached maturation status for those improvements

as well as other improvements that were deemed as necessary during the project development.

4.1.2.1. Define and support new vocabularies for the C3ISP pilots’ context

We have defined a new vocabulary by interacting with Pilots owners and studying Pilots

requirements. This vocabulary uses an ontology in which actions, terms and properties of the

terms support the definition of policies in a cross-pilots domain. In fact, we tried, and as of

now succeeded, to standardise the terminology for creating a single vocabulary suitable for all

the Pilots’ use cases. Having a single vocabulary helps operational maintenance, allows the

user a more streamlined user experience and results in a lower learning curve to get

acquainted with it. It could also enable cross-pilots use case scenarios. Nevertheless, since the

DSA Editor supports using any number of vocabularies (it allows selecting it when creating

the DSA Template), if necessary, we could define different vocabularies for each Pilot.

The vocabulary (see Figure 10) is currently available in the C3ISP testing environment

(https://dsamgrc3isp.iit.cnr.it:8443/vocabularies/c3isp_vocabulary_3.2.owl#) and Pilots are

using it for creating the set of rules they need. Continuous feedbacks are reported by the

Pilots’ owners and we expect to release improved versions of the ontology as the C3ISP

project matures. Please see the Pilots specific deliverables for a sample of their defined DSA

policies.

https://dsamgrc3isp.iit.cnr.it:8443/vocabularies/c3isp_vocabulary_3.2.owl

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 16 of 120

Figure 10: Graphical representation of Actions and Terms of the current vocabulary.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 17 of 120

4.1.2.2. Support definition of Data Manipulation Operations (DMOs)

(pre/post-processing rules)

Support for DMOs, in particular those defined in the SAP Anonymization Tool (see Section

8.1) has been introduced both at vocabulary-level, and at DSA Editor-level.

A DMO is specified by a name (e.g. AnonymizeDelimitedStringsBySuppression) and by a set

of properties that define how it will be applied to the data. In particular, a DMO can have the

following properties:

- Parameters: they specify the (part of) CTI data the DMO will be applied on. It

contains a list of data fields (in the CEF3 format);

- Options: they describe how the DMO will be applied, for example by gauging the

magnitude of anonymization (e.g. how many digits/octets of an IP address will be

suppressed). Basically, condensed and simplified in a single and easy to understand

keyword (e.g. HIGH_PRIVACY, LOW_PRIVACY, etc.), to describe the

configuration settings of each specific DMO. This has been done to simplify user

experience.

At vocabulary-level, a DMO is defined as an Action in the ontology (e.g.

AnonymizeDelimitedStringsBySuppression), while options and parameters are specified as

ontologyAnnotations for that Action (respectively in the seeAlso and isDefinedBy

annotations). To define a new DMO or to change the parameters / options of an existing

DMO, it is just a matter of acting on the vocabulary. The annotations will be interpreted by

the DSA Editor to present a specific user interface and by the DSA Mapper when it will create

the enforceable representation of the policy (see 4.2).

Figure 11: DMO definition in the ontology.

3CEF (Common Event Format) is the normalized format of the CTI data stored into C3ISP, see D7.2 for more.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 18 of 120

At DSA Editor-level, a DMO is defined in an obligation policy. When the user selects a DMO

from the vocabulary (e.g. AnonymizeDelimitedStringsBySuppression), s/he has the capability

of adding Parameters and Options by clicking on the “Add Info” button and selecting the

values as defined in the ontology annotations. Figure 12 shows this user experience.

Figure 12: Fill in additional information for the DMO

4.1.2.3. Support for Data Analytics Operations

Analytics are identified by an “AnalyticsName" (e.g. ConnToMaliciousHosts) and included as

Actions in the ontology. For improving the user experience in the policies definition, we

adopted a naming convention: all analytics services start with the prefix “Invoke” (i.e.

InvokeConnToMaliciousHosts). Then an analytics function can be invoked by a Subject on a

Data or on a certain set of data (named “AnalysisSet”; a Data belongs to an AnalysisSet) as

shown in the picture below.

Figure 13: Policies for handling rules on Analytics services

Analytics parameters are configuration settings to be used at analytics execution time. To

simplify the end-user experience, those parameters are not defined in the policies (or

vocabulary), but in specific analytics service configurations (hosted by the C3ISP Analytics

Engine). For this reason, we opted to have different analytics names defined in the

ontology to accommodate different analytics configurations (e.g., InvokeDetectDGA,

InvokeShareDGA, InvokeMalwarePropagationModelling, InvokeMalwareSpreadingAnalysis,

etc.). Since the number of analytics is not big and the same applies to the number of

configurations for each analytic, we think this is a good trade-off that helps the user in writing

more easily the DSA policies.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 19 of 120

4.1.2.4. Support notifications for results

Support for the notifications for results have not been added yet. It will be part of the

activities for the next period.

4.1.2.5. Improvements on the DSA Editor usability

At the DSA Editor-level, some changes have been introduced in order to create a more

relevant DSA according to the pilots’ domains and use cases.

In particular:

- Fields not relevant for the C3ISP Pilots have been removed from the original DSA

Editor prototype, polishing the user interface;

- roles and responsibilities of the parties;

- indemnities;

- governing law;

- data subject policies;

- A new list of values for the Purpose (law obligations, cyber monitoring, cyber

investigation, contractual obligations) and Data classification (confidential, highly

confidential, public, operational data) has been defined. These values have been

moved to a configuration file for easier maintenance;

- When creating a new DSA Template, the choice of the vocabulary is delegated to the

user that can select from a drop-down menu (before it was a free input text field

asking for a URI). The list of vocabularies has been defined in a configuration file;

- Improvements to the stylesheets used to show the DSA Editor (C3ISP background

image and logo, colours, etc.);

- Finally, the DSA Editor supports internationalization (I18N): the tool is already

available in English (the default), Spanish, Italian and French, and additional

languages can be added with little effort. Updated DSA Editor’s functionalities have

extended the messages and labels used for translations (translations are not hardcoded

but loaded dynamically).

4.1.2.6. Other improvements

4.1.2.6.1. New section for Policies on analytics results

We added a new section to the DSA Editor screen, called “Analytics Result Policies”, to

allow the user to define specific policies for the “result data” produced by the execution of an

analytics service (we call the “result data” also derived object). It has the same structure used

for the shared data: Authorization, Obligation, Prohibition (see next figure).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 20 of 120

Figure 14: New section: Policies on Analytics Result.

This is a first version and we plan to improve it in the next period. Currently, this choice for

the policies on the analytics result has the following assumptions and raises some questions to

be investigated better later:

- We use the same policies for all the derived data, i.e. all the analytics result;

- When there are no policies for the results specified in the DSA, the default is to permit

access to result data.

4.1.2.6.2. Use of free text fields

The DSA Editor supports specifying free text fields to be inserted by the user. This is used for

defining policies where there is a free text field like an identifier. In fact, this feature is

applied to the “Identifier” Term in the vocabulary, where we set a specific Annotation

(isDefinedBy set to User).

Figure 15: Annotation used to handle free text fields in the DSA Editor for the Term “Identifier”.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 21 of 120

When the Term with this annotation is used, the DSA Editor displays a free text field to be

filled in:

Figure 16: Fill in additional information for a value defined by the user on the “Identifier” Term.

4.1.2.6.3. New Property for evaluating membership of a Subject to a
Group

During the past period, we received a specific Pilot requirement to support writing DSA

policies that can check whether or not a user (subject) is member of a group of users.

Leveraging on the free text field support described above, we added the Term “Group” to the

vocabulary with a Property called “isMemberOf”, and set the isDefinedBy annotation to User:

Figure 17: “Group” and its annotation definition in the ontology (top image). The “Group” Term has a

“isMemberOf” property associated (bottom image).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 22 of 120

This allows writing a sentence to evaluate if a “Subject” is a member of a specified “Group”.

It needs as input parameter the Group name (the free text manual user entry), as in the

following examples:

Figure 18: “isMemberOf” in a DSAauthorization policy; Group One and Group Two are the group

names.

“isMemberOf” works in a similar way to “hasId” (used in the free text field case) that

evaluates a Subject based on his “Identifier”.

At enforcement time, group membership will be evaluated by using the specified group name

and the subject identity (e.g. by checking the Subject’s LDAP groups).

4.1.2.6.4. Updates to the Role-based Access Control settings

In order to support the DSA lifecycle (see DSA state diagram in Section 4.1), the access and

the use of the DSA Editor follows a role-based access control model (RBAC [3]) with the

following roles:

- A “legal expert”, in charge of creating DSA Templates suitable for particular use

cases. Typically, the “legal expert” is a person with a legal background of the context

to model or is a subject matter expert;

- A “policy expert”, in charge of defining the DSA instance starting from a predefined

DSA Template. Typically, the “policy expert” is the person that finalise the DSA with

the specific business rules.

The following table shows the permissions based on the role. The actions include CRUD

(Create, Read, Update, Delete) operations as well as Complete (to move the DSA instance to

the “Completed” state), Map (to map the DSA to its enforceable representation by invoking

the DSA Mapper, see 4.2), and Revoke (to set the DSA into the “Revoked” state).

Role Action
DSA states

Template Customised Completed Available Updated Expired Revoked

Legal

expert

Create X

Read X X

Update X

Delete X

Complete

Revoke

Map

Policy

expert

Create X

Read X X X X X X X

Update X X X X

Delete X X X X X X

Complete X X

Revoke X X X X X

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 23 of 120

Map X

4.1.3. Addressing specific privacy requirements in DSAs

C3ISP DSAs allow codifying policies that can fulfill a broad range of privacy requirements.

In particular, their expressive power includes:

- Granting or denying access to shared CTI data, which could include for example

personal data;

- Controlling access and usage of analytics functions and the analytics’ result (result

could include privacy-related data, as well);

- Defining Data Manipulation Operations (DMOs) on the shared data, to process the

data to assure the desired level of privacy.

By combining these features, with the help of the Ethical Advisor and other experts in the

field, it would be possible to encode the privacy requirements expressed by the Pilots and

beyond. In the following sections, we expand on the notions cited above.

4.1.3.1. Granting or denying access to shared CTI data

A DSA can define policies that take into account access control restrictions. Based on those

restrictions, it is possible to grant or deny access to the shared CTI data to only users

matching them. For example, they can easily express access criteria based on user’s profile

(e.g. a user must have a specific profile attribute value to access the shared data), group

membership (e.g. a user must be in a specific group of users or in more groups), role-based

access control – RBAC (e.g. a user must have a certain role(s) for access).

C3ISP also extends the classic access control paradigm allowing usage control, i.e. it can

continuously check the access rights validity after access has been initially granted (see

Section on Continuous Authorization Engine);

4.1.3.2. Controlling access and usage of analytics and the analytics’ result

We can define policies that control the access and use of the analytics services with the same

criteria we can use for access control for protecting the shared data. But in addition to that, we

can define policies that put privacy restrictions about what to do with and how to share the

result data object generated by the running of an analytics function. The result data can have

its own policies or inherit the “parent data policies” (i.e. the policies used by the data

processed by the analytics) and this depends on how we defined the DSA policies (see Section

4.1.2.4).

4.1.3.3. Defining DMOs on the shared data

This includes anonymization functions that aim at protecting individual privacy, while at the

same time maintaining enough value and significance in the data for the analytics algorithms.

Further, C3ISP DMOs supports also different forms of encryption, both well-known standard-

based and advanced homomorphic-based. Section 4.1.2.2 describes the currently available

DMOs.

4.1.4. Requirement Analysis at M24

Table 1 – DSA Editor Requirements Status

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 24 of 120

ID MET Description

C3ISP-Com-

DE-001
YES The tool supports the definition of Data Sharing

Agreements between parties. For defining policies on CTI

data and analytics results we defined a vocabulary (based

on an ontology) for expressing these constructs and

operations on them.

C3ISP-Com-

DE-002
YES The tool supports the definition of multi-lateral Data

Sharing Agreements that is two or more parties can be

specified in the agreement.

C3ISP-Com-

DE-003
PARTIALLY The definition of a specific vocabulary is needed for

expressing policies and legal constraints on CTI and

analytics results. First version of vocabulary is defined,

and improved version will be released based on Pilot’s

requirements. DSA Editor has been enhanced to support

specific policies on analytics results.

C3ISP-Com-

DE-004
YES It allows defining access and usage control policies.

C3ISP-Com-

DE-005
YES It allows defining policy that requires a parametric value

for some fields.

C3ISP-Com-

DE-006
PARTIALLY The definition of a specific vocabulary is needed for

expressing data manipulation operation. Vocabulary

includes DMOs as actions. Based on Pilot’s requirements,

it could be added/refined version of vocabulary actions.

C3ISP-Com-

DE-007
YES The tool already uses Web ontologies for defining its

vocabularies.

C3ISP-Com-

DE-008
YES It already allows for a DSA validity period.

C3ISP-Com-

DE-009

YES The tool allows editing DSA and now also supports

revoking DSA.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 25 of 120

CEISP-Comp-

DS-010
YES The tool is a Web application available also as a service.

C3ISP-Com-

DE-011
YES The tool allows interactive and guided policy authoring.

4.1.5. First release of the component

The DSA Editor component is a web tool reachable from the Internet at the following link:

https://dsamgrc3isp.iit.cnr.it/DSAEditor/

It is hosted on a Virtual Machine at CNR’s Farm, where we setup the C3ISP testing

environment. The tool is written in Java, it uses Vaadin4 and GWT5 technologies for the web

user interface presentation, and the Spring Framework6 for the backend logic. Deliverable

D7.3 contains a description of the DSA Editor internal architecture.

Once connected to the DSA Editor, it asks for user authentication:

Figure 19: DSA Editor Tool: Login Screen.

As reported in 4.1.2.6.4, users’ permissions are based on roles. Each user is assigned either

the “lawexpert” role (used to create the DSA Template; the button is show

on the top-right corner), or the “policyexpert” role (used to create the DSA instance; the

 button is shown on the top-right corner). DSA Editor’s users along with their roles

are stored in an internal database based on MySQL7.

4Website: https://vaadin.com, open source code: https://github.com/vaadin/platform
5Google Web Toolkit (GWT): http://www.gwtproject.org
6Spring Framework: https://spring.io
7 MySQL Community Server: https://dev.mysql.com/downloads/mysql

https://dsamgrc3isp.iit.cnr.it/DSAEditor/
https://vaadin.com/
https://github.com/vaadin/platform
http://www.gwtproject.org/
https://spring.io/
https://dev.mysql.com/downloads/mysql/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 26 of 120

Once connected, the user sees the list of his/her DSAs and, depending on the role, specific

functionalities are available or not (see RBAC matrix in Section 4.1.2.6.4):

Figure 20: DSA Editor Tool: DSAs List.

For each DSA, the following information are reported:

- DSA Name: the name set for the DSA;

- DSA Creator: the name of the user that created it;

- DSA Version: each time a DSA is updated, its version changes (this allows managing

the Updated DSA state and - at enforcement time - verify if the data is coupled with

the latest DSA version);

- DSA Status: the state of the DSA, as per the DSA state diagram (see 4.1.1);

- Create Date: when the DSA has been created;

- Start/End Date: the validity interval of the DSA (written in the DSA itself; it allows

handling the Expired DSA state at enforcement time);

- DSA ID: the DSA UUID8 internal identifier.

8 Universally Unique IDentifier: https://en.wikipedia.org/wiki/Universally_unique_identifier

https://en.wikipedia.org/wiki/Universally_unique_identifier

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 27 of 120

Clicking on a specific DSA, shows the available actions in a panel on the right:

Figure 21: DSA Editor Tool: Available DSA actions.

Clicking on Show DSA opens the DSA Editor interface in view mode that allows exploring

the DSA structure, including DSA metadata (on the top) and DSA policies (represented as

CNL expressions):

Figure 22: DSA Editor Tool: Show DSA.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 28 of 120

Clicking on the Delete button removes the DSA from the DSA Store, while when selecting

Revoke, the DSA Editor moves the DSA to the Revoked state. In both cases, a confirmation

dialog is shown before proceeding.

The Edit button opens the DSA Editor in authoring mode and allows performing changes,

like updating the DSA metadata or working on the DSA policies.

Figure 23: DSA Editor Tool: Edit DSA.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 29 of 120

Clicking on the button on the top-right corner, opens a dialog that allows you to

select the DSA Template to instantiate (all the DSA Templates will appear, by name):

Figure 24: DSA Editor Tool: New DSA – select DSA Template; on the right a sample DSA Template list.

Once a DSA Template has been selected, the DSA Editor will show the structure of the new

DSA. The new DSA will inherit the definitions already inserted in the DSA Template,

including metadata and policies, if any.

Figure 25: DSA Editor Tool: New DSA.

As explained in Section 4.1.1, the policies inherited from the DSA Template cannot be

removed (the button is greyed out), but they can be completed if there are free text fields

(like in Figure 25).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 30 of 120

With the appropriate role, a user can create a DSA Template by clicking on the

 button on the top-right corner. Conversely, with respect to the DSA

instance, the DSA Template requires the selection of a vocabulary to load all the Actions,

Terms and Properties that can be used to build the DSA policies:

Figure 26: DSA Editor Tool: New DSA Template – vocabulary selection.

For this first release, the vocabulary defined is C3ISP DSAMGR M24 Env 3.2 (which

corresponds to what is reported in Section 4.1.2.1).

4.1.5.1. Link to Source Code

Project source code is managed using GIT SCM software and it is available at the following

link:

https://devC3ISP.iit.cnr.it:8443/c3isp-wp8/dsaManager/dsaEditor/dsaat.git

4.1.5.1. Source Code Description

The DSA Editor is a web tool accessed via a web browser; a list of the internal APIs and their

description is reported in Section 7.4.

The DSA Editor source code structure is depicted in Figure 27:

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/dsaManager/dsaEditor/dsaat.git

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 31 of 120

Figure 27: DSA Editor code structure

Build tasks and project dependencies (Spring, GWT and Vaadin frameworks and other

utilities libraries, as described in 4.1.5) are managed using Maven.

The package client contains all the classes implementing the presentation logic, which is

based on the GWT framework. In addition to the UI widgets and layout definitions, this

package also contains the application language localisation configurations. The basic GWT

application configuration is contained in the file DSAAuthoringTool.gwt.xml, under the root

project directory.

The package server contains the classes implementing the backend services, including both

the DSA Editor application handlers and the interaction with remote DSA API services.

Finally, the shared package contains the application models and main logic shared between

the classes under client and server packages. The fundamental class in this package is

/shared/dsa/DsaBean.java, which contains the model representing a DSA object including all

its basic properties, metadata and policies. This model is used both for the DSA presentation

and editing tasks in the UI and DSA serialization and communication tasks operated in the

backend.

4.2. DSA Mapper

4.2.1. Component description

The DSA Mapper aims to transform the set of rules of a DSA, defined through the DSA

Editor (Section 4.1) and specified in Controlled Natural Language (CNL), into policies that

can be automatically enforced by the Continuous Authorization Engine (CAUTHENG)

described in Section 5.7.

This component has been designed and developed within the Coco Cloud EU FP7 project in

order to provide a mapper function that is suitable to cope with all vocabularies and DSA

provided by the use cases. In the C3ISP Framework, the DSA Mapper is part of the DSA

Manager component, and the DSA Mapper prototype released in Coco Cloud EU FP7project

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 32 of 120

will be extended to cover the C3ISP requirements. The current Technology Readiness Level

(TRL) of the DSA Mapper is 4, and within the C3ISP Framework we plan to maturate it to

reach TRL 6.

4.2.2. Maturation status

With respect to what has been described in D8.1, the DSA mapper has been improved

coherently with the DSA Editor. In fact, as well as, new functionalities, kind of policies, and

new vocabularies have been introduced and managed at the level of the DSA Editor, the DSA

Mapper has been enhanced to manage them. Hence, the improvements are related to:

- support new vocabularies for the C3ISPpilots’ context, with particular attention to the

legal aspects related to the security of the information sharing [C3ISP-Com-DM-004];

- support definition of Data Manipulation Operations (DMOs) (pre/post-processing

rules) [it copies the requirements of C3ISP-Com-DM-006];

- support for Data Analytics Operations [C3ISP-Com-DM-004];

- translate policies on Analytics Results.

4.2.2.1. Support new vocabularies for the C3ISPpilots’ context

As reported in Section 4.1.2.1, new vocabularies have been defined for the four C3ISP

project. The DSA mapper is able to learn them and recognize new terms in each vocabulary in

such a way to correctly map DSA policies.

4.2.2.2. Support definition of Data Manipulation Operations (DMOs)

Data Manipulation Operations are managed at vocabulary-level as an Action of the ontology

where options and parameters are managed as Annotation for the specific action. At the level

of DSA Editor, DMO are obligation policies.

The DSA Mapper is able to recognize DMO policies and to traduce them as obligations

policies in which the subject is always the term “System”.

Let us consider that in a rule (authorisation/prohibition/obligation) a DMO is referred as

statementInfo="AnonymizeByDelimiter{param=DestinationAddress

option=SUBSTRING_MEDIUM}”

The mapper returns an ObligationExpression such as:

<ObligationExpressions>

 <ObligationExpression FulfillOn="Deny"

ObligationId="AnonymizeByDelimiter%7Bparam%3DDestinationAddress+opti

on%3DSUBSTRING_MEDIUM%7D" />

</ObligationExpressions>

4.2.2.3. Support for Data Analytics Operations

As DMO, also Analytics are identified by an “AnalyticsName” that is included in the

vocabulary as an Action. Differently from DMO, the Analytics parameters are configuration

settings that can be used at analytics execution time and are not visible in the DSA editing

phase.

The DSA Mapper translates Analytics in the same way it does for the other actions.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 33 of 120

4.2.2.4. New section for Policies on Analytics Results

According to the xsd schema of the DSA, authorisation, prohibition, and obligation policies

related to data derived from an analytics action, are collected in a separate section. The

Mapper is able to identify this section and translate the policies in it in such a way that this

distinction is respected.

This functionality will be improved within the third year of the project, in order to deal with

not only first order analytics results but also to second order or deeper results.

4.2.3. Requirement Analysis at M24

With respect to the requirements table in D8.1 and recalled below, the DSA Mapper has been

improved by fully implementing:

[C3ISP-Com-DM-004] the capability of learning new pilots’ vocabularies (from

Partially to YES).

[C3ISP-Com-DM-006] the capability of translating as pre-obligations policies related

to data manipulation operation from PARTIALLY to YES).

Table 2 – DSA Mapper Requirements Status

ID MET Description

C3ISP-Com-

DM-001

YES The current version of the Mapper already grants

Prosumers that the translation of data sharing constraints

is compliant and consistent from the high level to the

low-level specification.

C3ISP-Com-

DM-002

YES The current version of the Mapper provides as output

directly enforceable access control policies.

C3ISP-Com-

DM-003

YES The current version of the Mapper provides as output

directly enforceable usage control policies.

C3ISP-Com-

DM-004

YES The Mapper needs to learn every new vocabulary in order

to correctly interpret it.

C3ISP-Com-

DM-005

PARTIALLY The Mapper needs to be upgraded to be able to translate

as post-obligations policies related to notification that are

triggered once the analytics service result is available.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 34 of 120

C3ISP-Com-

DM-006

YES The Mapper needs to be upgraded to be able to translate

as pre-obligations policies related to data manipulation

operation.

C3ISP-Com-

DM-007

NO The Mapper should be maturated to interpret rules about

the risk of data sharing in a proper way

C3ISP-Com-

DM-008

YES The current version of the Mapper is already able to

translate policies from CNL into a XACML-based

language.

4.2.4. First release of the component

The DSA Mapper component is a web service, available at

https://dsamgrc3isp.iit.cnr.it:8443/dsa-mapper/swagger-ui.html

It implements APIs by exposing endpoints developed with the RESTful paradigm. It exposes

two main functionalities as it is described in D7.3 Section 7.2. Both functionalities have been

implemented by using the Eclipse environment, version oxygen2.

4.2.4.1. Link to Source Code

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/dsaManager/dsaMapper/mapperDSA

4.2.4.2. Source Code Description

The list of the APIs and their description is reported in deliverable D7.3, in Section 7.2.

The DSA Mapper source code structure is depicted in Figure 28.

https://dsamgrc3isp.iit.cnr.it:8443/dsa-mapper/swagger-ui.html

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 35 of 120

Figure 28. DSA Mapper Code Structure

The packages are logically divided for the purpose they must accomplish:

 Dsamapper contains all public methods for external calls.

 Configjson takes care to load the configuration for the cnl conversion

 Restclient contains the classes for calls remote web services (E.g. Upload a dsa after

being mapped)

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 36 of 120

 Rulehandler contains abstract and derived classes to represent Authorization,

Prohibition and Obligations

 Restapi has all implementation for the actual Web Service of the mapper

 Tests contains all the Test Cases.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 37 of 120

5. Data collection and Usage Enforcement: The Information

Sharing Infrastructure (ISI)

The Information Sharing Infrastructure is one of the foundations of the C3ISP architecture,

responsible for data management and sharing. More precisely, besides basic CRUD

operations on CTI data, it is devoted at providing sharing capabilities regulated through

sophisticated policies, embedded in Data Sharing Agreements (DSAs);

5.1. Information Sharing Infrastructure API

5.1.1. Component description

The ISI API is a Java web application that is in charge of exposing a RESTful interface for

the whole ISI. It is the entry point for ISI users.

The ISI API has two main objectives:

- To offer operations for DPO management

- To act as front-end for search functionalities

The component achieves its objectives by interacting with other components, acting as

mediator between a user and the components responsible for the execution of the requested

operation. It also ensures requestor’s authentication through its interaction with the CSS, as

well as some syntactic/ and sanity checks on input parameters.

The ISI API interacts:

- For DPO management operations: with DSA Adapter Front-End

- For DPO search operations, with DPOS

- For DSA search operations, with DSA Store

The ISI API is implemented using the Spring framework family. It relies on the latter for

authentication, syntax and sanity checks. Simple input transformation (when necessary) are

performed in order to create the correct calls to other C3ISP components.

5.1.2. Maturation status

The ISI API was not part of the set of assets considered for D8.1 but it is deemed necessary in

order to offer a consistent and unique entry point to users, where security mechanisms for

authentication and input sanitisation may be safely enforced.

At M24, the ISI API is implemented and supports most of the available C3ISP functionalities

at their maturation level. Being a component in charge of exposing other component’s

functionalities, it is not foreseen to be significantly changed before the end of the project but

naturally, it will be updated as the set of C3ISP functionalities will grow.

5.1.3. Requirement Analysis at M24

The ISI API was not part of components analysed in D8.1, therefore this section will contain a

list of requirements for the component to be fulfilled by the end of the project.

ID Priority Requirement

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 38 of 120

C3ISP-Com-ISIAPI-

001

MUST The component must be able to offer the C3ISP

ISI functionalities.

C3ISP-Com-ISIAPI-

002

MUST The component must ensure user authentication.

C3ISP-Com-ISIAPI-

003

MUST The component must ensure input sanitisation.

The requirement analysis may be detailed as follows:

ID MET Description

C3ISP-Com-

ISIAPI-001

PARTIALLY The current version of the ISI API offers support for ISI

functionalities, but it has to be updated:

- When new functionalities will be made available

or updated

- With respect to the “move” operation, to support

DPO transfers from Local to Central ISI (see

D7.3)

C3ISP-Com-

ISIAPI-002

YES The current version of the ISI API provides support for

user authentication.

C3ISP-Com-

ISIAPI-003

YES The current version of the ISI API provides support for

data sanitisation using standard Spring functionalities

(type checking, data serialization and de-serialization).

5.1.4. First release of the component

The first release of the ISI API runs as a Java application powered by the Spring framework.

It exposes a RESTful API by means of a number of classes, one per method, as detailed in the

following Table 3. Each of such classes performs checks on the input parameters (JSON

validation against the model definition, sanity checks…), to create a new call to other ISI

components in charge of the invoked functionality.

Table 3: ISI API RESTful methods

Method Name Note Parameter Example

/v1/dpo A POST request to the URL with the

parameters as for the example will

trigger the DPO create workflow.

The return element of the call is a

HTTP Form with:

- fileToSubmit: input file

- inputMetadata:

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 39 of 120

DPO_id for the submitted file, if call

is successful.
{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : "ns:c3isp:dpo-

metadata",

 "Value" :

"{\"id\":\"4000123\",\"dsa_id\":\"

DSA-56976731-3c16-46cc-a4e1-

8384c6208eb0\",\"start_time\":\"2

017-12-

14T12:00:00.0Z\",\"end_time\":\"

2017-12-

14T18:01:01.0Z\",\"event_type\":

\"Firewall

Event\",\"organization\":\"3DRep

o\"}",

 "DataType" : "string"

 }]

 }

}

/v1/dpo/<dpo_id> A GET request to this endpoint (once

user is authenticated), if authorised,

will return the DPO associated to the

DPO_id. Optionally, it is possible to

pass additional parameters to the call

using the metadata format as

specified in the next cell.

HTTP Header x-c3isp-

input_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired

metadata>,

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}

/v1/dpo/<dpo_id> A DELETE request to this endpoint

(once user is authenticated), if

authorised, will delete the DPO

associated to the DPO_id.

Optionally, it is possible to pass

additional parameters to the call

using the metadata format as

specified in the next cell.

HTTP Header x-c3isp-

input_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired

metadata>,

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 40 of 120

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}
/v1/move/dpo/<dpo

_id>
A POST request to this endpoint will

trigger a move operation from a

Local ISI to a Central ISI.

Encryption parameters and address

of Central ISI must be configured by

an administrator prior to the call.

Optionally, it is possible to pass

additional parameters to the call

using the metadata format as

specified in the next cell.

HTTP Header x-c3isp-

input_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired

metadata>,

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}
/v1/prepareData/ A POST request to this endpoint will

trigger the execution of a workflow

for the creation of a Data Lake

Buffer, populated with the specified

DPO_id(s). See section 5.3 for more

details. Optionally, it is possible to

pass additional parameters to the call

using the metadata format as

specified in the next cell.

<set of Buffer Manager

parameters, see section Erreur !

Source du renvoi introuvable.>

HTTP Header x-c3isp-

input_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired

metadata>,

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}
/v1/search/<store>

/<longResultFlag>
A POST request to this endpoint will

trigger the execution of a search

operation on DPOS or DSA Store.

See section Erreur ! Source du

renvoi introuvable. for more details.

It is possible to pass the desired

query string using the metadata

HTTP Form intput_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" :

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 41 of 120

format as specified in the next cell. ”ns:c3isp:search-string”,

 "Value" : <DPOS search

string as in section Erreur !

Source du renvoi introuvable.>,

 "DataType" : "string"

 }]

 }

}

5.1.4.1. Link to Source Code

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/isiApi/isi-api

5.1.4.2. Source Code Description

The list of the APIs and their description is reported in deliverable D7.3, in Section 3.4.1.

The source code of ISI API is structured as depicted in Figure 29.

The main package eu.c3isp.isi.api contains the ApplicationDeployer class, in charge of

enabling the Spring framework activation for the web application.

The package eu.c3isp.isi.api.restapi.impl contains the implementation of all exposed APIs,

one class per method.

The package eu.c3isp.isi.api.restapi.types has all the model class definitions. Metadata object

containers are defined here for each of the exposed REST methods.

Package eu.c3isp.isi.api.restapi.types.xacml contains some utility classes and metadata object

containers to allow a transformation from C3ISP JSON objects to XACML JSON objects,

used for easing the authorization checks triggered by DSA Adapter Front-End.

Lastly, eu.c3isp.isi.api.restapi.types.security has the Spring security initialization.

Figure 29: The ISI Api source code packages from the Eclipse IDE

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 42 of 120

5.2. Data Protected Object Storage (DPOS)

5.2.1. Component description

The Data Protected Object Storage (DPOS) persistently stores the CTI data provided by the

Prosumers in the form of the C3ISP data bundle (or DPO – Data Protected Object).

With respect to the storage of CTI data, the DPOS implements Create, Read and Delete

functionality. Since each DPO is protected, and therefore immutable, no Update operation is

appropriate in this context.

Each DPO is identified by a unique DPO ID, provided by the client. Within the DPOS, the

DPO is implemented as four separate records:

- a CTI file,

- the associated Data Sharing Agreement (DSA) which protects the DSA by

identifying authorizations, obligations and prohibitions associated with the CTI file

(see Section 4)

- a hash signature of both the CTI file and the DSA agreement (see Section 5.10)

- a set of metadata key-value pairs, which provide both description and a searchable

vocabulary.

As stated above, the DPOS provides a CRD + search functionality. It implements the

following API methods:

- CreateDPO: Given a CTI file, and the associated DSA file, hash code and DPO

metadata document, create a DPO in the DPOS.

- ReadDPO: Retrieve the four components of a DPO from the DPOS repository, given

its DPO ID.

- DeleteDPO: Given a DPO ID, delete the corresponding DPO from the repository.

- SearchDPO: Given a JSON-based search string (see Section 5.2.4.2), query the DPO

metadata repository, and return a set of metadata entries corresponding to the

matching DPOs. This method returns either a set of DPO IDs or a set of full DPO

metadata entries, based on the boolean longResultFlag parameter.

Like most other C3ISP Framework components, the DPOS is implemented using the Java

SpringBoot Framework. The DPOS software provides a format and error-checking wrapper

to both its storage and search backends, parses queries and translates it to the format

supported by the search backend and exposes the DPOS API via a REST interface.

5.2.2. Maturation status

At M24, the prototype is fully functional, and integrated with its storage backend. Its REST

API is available at https://isic3isp.iit.cnr.it/dpos-api/.

In addition to the storage functionality described in the design phase (see deliverable D8.1),

the DPOS additionally supports a search feature, which allows search on a set of metadata

fields stored as part of the DPOS. The search feature allows for easier retrieval of data (for

example, allowing a user to retrieve all data belonging to the parent organization without

having to store an index of created data), and most importantly, allows collaborative analytics.

Both the metadata fields and the query languages use a JSON-based format.

No target Technology Readiness Level was defined for the DPOS during the requirements-

gathering phase in deliverable D8.1, since this component did not feature in the deliverable.

Thanks to its successful integration with other ISI components, it currently achieves

https://isic3isp.iit.cnr.it/dpos-api/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 43 of 120

approximately TRL 5, and in line with other C3ISP components, we hope to achieve TRL 6

by the end of the first validation cycle for both its CRD and search functionality.

5.2.3. Requirement Analysis at M24

Postponed

5.2.4. First release of the component

The current version of the DPOS uses two back-end technologies: a storage backend, and a

search backend. The storage backend stores the CTI data itself, the DSA, and the hash

signature on a filesystem, while the search backend stores, indexes, and provides the search

interface to DPO metadata provided by the DPOS client.

5.2.4.1. DPO storage backend

The DPOS supports several storage backend alternatives, depending on the user’s need for

either simplicity of installation or large capacity. The choice of implementation is determined

by activating the corresponding profile in the DPOS configuration file,
application.properties:

#centraldpos <- large-capacity configuration, such as in a central ISI
spring.profiles.active=centraldpos
#spring.data.mongodb.uri=mongodb://dpostoremgr:dpostoremgr-
kent@iaic3isp.iit.cnr.it:27017/dpostore
#spring.hadoop.config.fs.defaultFS=hdfs://iaic3isp.iit.cnr.it:19000

localdpos <- small-scale configuration, such as on a Local ISI node
spring.profiles.active=localdpos
spring.data.mongodb.uri=mongodb://localhost:27017/dpostore
spring.hadoop.config.fs.defaultFS=hdfs://localhost:19000

The large capacity version of the back-end will support a DPOS deployment requiring high

storage capacity and high performance, for example in a central ISI installation. This version

is implemented using the Hadoop filesystem (HDFS).

The scaled-down version of the back end is implemented on a standard filesystem. This

version may be used in lower-capacity DPOS installations, such as the one used by a Local

ISI.

The physical structure of the DPO mirrors its logical structure. The CTI data, the DSA, and

the hash are stored as filesystem files. The filename is constructed from the DPO ID, which

marks the membership of the file in a DPO, and an extension, which marks the purpose of the

file.

Purpose Filename Example

CTI payload dpo_id.payload 66c33d30-f086-4409-9b0c-bcca431f2006.payload

Hash signature dpo_id.sign 66c33d30-f086-4409-9b0c-bcca431f2006.sign

DSA file dpo_id.dsa 66c33d30-f086-4409-9b0c-bcca431f2006.dsa

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 44 of 120

5.2.4.2. DPO search backend

The DPO search backend is implemented by MongoDB NoSQL database9 and stores

metadata included with the C3ISP DPO. This metadata is used by the C3ISP Framework to

classify and search CTI data to enable collaborative analytics.

This searchable metadata is packaged with the DPO, but unlike the DSA-protected CTI data,

it may be indexed outside of the DPO. The metadata includes CTI metadata, as well as DPO-

specific metadata, also known as DPO (data-protected object) metadata and will form part of

the CTI Bundle header. Like its associated ontology and query format, it uses JSON format.

Vocabulary

The DPO metadata is described by a simple ontology, describing the metadata vocabulary,

data type, and operators allowed in the queries. It contains one compulsory id field, which

uniquely identifies the DPO within the DPOS. The ontology must define the id field, as well

as the other administrator-defined metadata fields.

The metadata is divided into two types:

- CTI metadata: the metadata specific to the CTI data being stored in the DPO. This

metadata can be inferred directly from the CTI data.

- Examples: start_time, end_time, event_type

- All other metadata: additional metadata added by the Bundle Manager and DPOS that

describe attributes specific to C3ISP network

- Examples: id, dsa_id

CTI metadata may change during CTI Bundle creation if its associated CTI data is changed by

the pre-bundling DMOs specified in the DSA. Once the CTI Bundle is stored in the DPOS,

the metadata will remain static for the lifetime of the data-protected CTI Bundle (DPO).

The ontology will be structured as follows:

{
 "name": "Name of schema",
 "attributes": [
 {
 "name": "Attribute1",
 "operators": ["op1", .. "opK"],
 "valueType": "Type1",
 “constraint”: <valueType-specific constraint, such as length upper-
and-lowerbounds>
 },
 ...
 {
 "name": "AttributeN",
 "operators": ["opN1",.., opNK"],
 "valueType": "TypeN"
 }
]
}'

where permitted operators are in [eq, gt, gte, in, lt, lte, ne, nin], and where the valueTypes are

in [string, number, boolean, date, array, enumerated]

Example:

{
 "name":"DPO Metadata",

9 MongoDB Server, available: https://www.mongodb.com/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 45 of 120

 "attributes":[
 {
 "name":"id",
 "operators":["eq"],
 "valueType":"string",
 "constraints":[1,256]
 },
 {
 "name":"dsa_id",
 "operators":["eq"],
 "valueType":"string",
 "constraints":[1,256]
 },
 {
 "name":"start_time",
 "operators":["le","lte","gt","gte","eq","ne"],
 "valueType":"date",
 "constraints": ["2018-12-16T14:00:00.0Z","2018-12-20T14:00:00.0Z"]
 },
 {
 "name":"event_type",
 "operators":["eq","ne"],
 "valueType":"string"
 },
 {
 "name":"organization",
 "operators":["eq","ne"],
 "valueType":"string"
 },
 {
 "name":"severity_level",
 "operators":["eq","ne"],
 "valueType":"enumerated",
 "constraints": ["INFORMATIONAL", "WARNING", "MINOR", "MAJOR",
"CRITICAL"]
 }

]
}

Format

DPO metadata will be stored in JSONformat, in a simple flat structure:

{ "Attribute1": "Value1",
 "Attribute2": "Value2",
 ...
 "AttributeN": "ValueN"
}
where the attributes and value types are defined in the metadata ontology.

Example:
{ "id":"12345",
 "dsa_id" : "54321",
 "start_time" :"2017-12-14T12:00:00.0Z",
 "end_time" :"2017-12-14T18:01:01.0Z",
 "event_type" :"Firewall Event",
 "organization" :"3DRepo"
}

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 46 of 120

Note: all input dates for metadata and queries must be in ISO 8601 format. They are stored

zoned in UTC.

Search

Once DPO metadata is stored within the DPOS, the search backend facilitates clients to query

it by passing a search string to the SearchDPO REST call. The search string is a JSON

document with the same ontology as the DPO metadata document, containing a flat list of

criteria, which include DPO metadata fields with operators and query values. The search

string also specifies a combining rule (“and” or “or”) to combine the query criteria. The

DPOS uses this search string to perform simple, field-specific matching on the metadata. For

example, search for event_type will be a single string comparison, while search on time range

may be an overlap comparison.

Format:

search_string= '{
 "combining_rule": "rule",
 "criteria": [
 {
 "attribute": "Attribute1",
 "operator": "op1",
 "value": "QueryValue1"
 }
 ...
 {
 "attribute": "AttributeN",
 "operator": "opK"
 "value": "QueryValueN"
 }
]
}'

where rule∊ [and, or], Attribute1..AttributeN and op1..opK are defined in the ontology file for

this operator, and QueryValue1..QueryValueN correspond to the type defined in the metadata

ontology.

Example:

search_string = '{
 "combining_rule": "and",
 "criteria": [
 {
 "attribute": "event_type",
 "operator": "eq",
 "value": "Firewall Event"
 },
 {
 "attribute": "start_time",
 "operator": "gt",
 "value": "2017-12-12T12:00:00.0Z"
 },
 {
 "attribute": "end_time",
 "operator": "lt",

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 47 of 120

 "value": "2017-12-12T18:00:00.0Z"
 }
]
}'

The above query searches for all DPOs which contain CTIs of type Firewall Event that

contain records of events observed between noon and 6pm on 12 December 2017. When this

search is performed by the C3ISP analytics service, it may allow collaborative analytics to be

performed on matching data from multiple organizations.

5.2.4.3. Link to Source Code

The GIT repository for the DPOS is hosted by CNR, at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp5/DPOS/dpos-api . The source code tree is shared with the DPOS API.

5.2.4.4. Source Code Description

The code structure of the DPOS and DPOS API is depicted in Figure 30. Please note the two

alternative DPOS implementations: DPOSCentral and DPOSLocal, both implementing the

DPOSInterface. The choice of backend implementation is configured by a parameter in the

application.properties file.

The two main object types are DPOMetadata and DPO, representing respectively the DPO

metadata header and the remaining three components of the DPO. Their SpringBoot

repositories are then implemented by DPOMetadataRepository and DPOSInterface, which

then interface with the MongoDB search backend and either HDFS (DPOSCentral) or local

filesystem (DPOSLocal) storage backend, depending on the profile selected in

application.properties resource file. The coordination between the two backends is

implemented by the DPOS class, which treats each DPO as a single unit.

The DPO metadata ontology is defined in the dpo-metadata-ontology.json resource file, and

read into the DPOMetadataOntology class. This ontology defines DPO metadata fields

allowable in the DPO metadataheader, and also which fields are valid for use in DPO queries.

The DPO query files manages parsing and validating DPO queries against the configured

ontology, and the translation of queries into a format usable by the backend repository.

https://devc3isp.iit.cnr.it:8443/c3isp-wp5/DPOS/dpos-api
https://devc3isp.iit.cnr.it:8443/c3isp-wp5/DPOS/dpos-api

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 48 of 120

Figure 30: DPOS and DPOS API code structure

5.3. Buffer –Manager

5.3.1. Component description

The Buffer Manager is a component of the C3ISP Framework, introduced with the goal of

granting temporary access to security data that are required by C3ISP-aware Analytics

services and Legacy Analytics services. It operates by transferring the DPOs that are required

by the Analytic service to a temporary storage, called a Data Lake, which the analytic itself

will have direct access to. Data are manipulated according to existing DSAs before being

written to the temporary storage, thus making sure that the Analytic services only have access

to the data they have right to read.

A Data Lake is a common interface introduced with the Buffer Manager and it’s used for

storing and retrieving security data; it can be implemented on a variety of storage types, from

databases to distributed file systems. Data Lakes can also be of two distinct types:

DataLakeBuffer (DLB) and VirtualDataLake (VDL) that are different in terms of how they

access and read the data; different implementations of Data Lakes for different storages define

the differences between those two types.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 49 of 120

Data Lakes instances can be created, populated and deleted (released) using the Buffer

Manager API along with a URI that is provided upon creation, which at any moment is

unique among all the active Data Lake URIs.

The Analytics services are able to autonomously connect to any Data Lake instance using the

URI and the right protocol, without involving the Buffer Manager in the process. This

requires an authentication system to be set when exposing the storage, in order to prevent

unauthorized access to security. Generally speaking, authenticating access to Data Lakes is

not a task of the Buffer Manager.

Three implementations of the Data Lake interface are planned to be released in the final

version, each wrapping a different storage type: traditional filesystem (Linux and Windows), a

MySQL instance and a distributed file system running on ApacheHDFS. The system is

designed to ease the creation of new Data Lake implementations for different storage types in

the future.

In the current design the Buffer Manager runs in the ISI virtual machine and is exposed by the

ISI API.

5.3.2. Maturation status

The Buffer Manager is a new component of the C3ISP infrastructure.

5.3.3. Requirement Analysis at M24

postponed

5.3.4. First release of the component

The Y2 release of the Buffer Manager implements the following tasks:

 Create new Data Lake instances

 Produce a URI that uniquely identifies any instance of a Data Lake among the others.

The URI can be used to access that instance directly with read and write privileges

 Fetch DPOs from the central ISI using the ISI API and write them to a Data Lake

 Write new data to an existing Data Lake instance. Data and access credentials (when

needed) are not stored by the Buffer Manager and must be provided by the requestor.

 Delete an instance of Data Lake using the URI. Access credentials (when needed) are

not stored by the Buffer Manager and must be provided by the requestor.

In particular, the URIs are needed in order to read/write data from the related instance of Data

Lake and to release it, thus they must be unique. The URI can be used to access the storage

using the appropriate protocol, e.g.: after creating an instance of a MySQL Data Lake

implementation, a URI that starts with jdbc:mysql:// will be returned by the BufferManager

API, so it will be possible to access the MySQL database using JDBC.

As of M24 there are two use cases that involve the Buffer Manager. In the first use case,

Analytics services call the Buffer Manager indirectly as a consequence of the call to the ISI

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 50 of 120

API /prepareData endpoint. Analytics send a list of DPOs they need to run the analysis,

then the Buffer Manager fetches the data using the ISI API, writes them into a Data Lake and

calls the Format Adapter component that transform the data to the right format (e.g. CSV or

CEF) as requested by the Analytic service. Finally, the URI of the new Data Lake is returned

to the requesting service.

In the second use case, Data Lakes are used as a temporary storage by the DMO Engine

during the manipulation of DPO. Whenever a DPO is requested through the ISI API (e.g. as

part of the first use case), it must be read from the DPOS and manipulated in order to comply

with one or more DSAs. A Data Lake is requested by the DMO Engine directly to the Buffer

Manager in order to store the DPO, then the Data Lake URI is processed by a DMO

Operation and finally returned by the ISI API.

Both use cases end with the release of the Data Lake and the deletion of all data that was ever

written in it.

The Buffer Manager component is developed using Spring Boot and runs in the ISI

environment. In addition to the Buffer Manager API the application exposes a Swagger-UI

definition that contains extended documentation about the functions of the API, which are:

 A /prepareData endpoint that creates a Data Lake instance and populates it with data

read from the ISI API.

◦ Parameters: the Data Lake type (VDL or DLB), the storage type of the Data Lake,

the ISI API metadata, the desired output format of the data, the name of the

Analytic service that is requesting the operation and the list of required DPOs.

◦ Return value: The URI of the new Data Lake instance.

 A /prepareEmptyDataLake endpoint that creates an empty Data Lake instance.

◦ Parameters: Data Lake type and storage type

◦ Return value: The URI of the new Data Lake instance.

 A /populateDataLake endpoint that writes data to a new file inside an existing Data

Lake. This function does not read the data from the ISI: it populates the Data Lake

with the content provided as a parameter.

◦ Parameters: the URI of an existing Data Lake instance and the content of the new

file. Optionally, the name of the file where the data will be saved.

◦ Return value: a message with the outcome of the write operation.

 A /releaseDataLake endpoint that can be used to delete any Data Lake by providing

its URI and the access credentials.

◦ Parameters: The Data Lake URI (must contain access credentials, when required

by the protocol used to access the Data Lake)

◦ Return value: a message with the outcome of the release operation.

Also, the Data Lake interface has been implemented and is fully functional for two storage

types out of three planned:

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 51 of 120

 a File System Data Lake that uses a traditional file system to store the data. Data Lakes

are created in a dedicated folder that is then exposed using NFS. URIs follow this

model:

file:///opt/isi/datalakebuffer/<data_lake_name>

 A MySQL Data Lake, built for analytic services that need to read data from a

relational DBMS. This implementation provides a MySQL URL. Credentials are

provided as properties in the URL in order to grant access only to the rightful owner:

jdbc:mysql://iaic3isp.iit.cnr.it:3306/<data_lake_name>?usr=<user>&

psw=<password>

Future versions of the Buffer Manager will include a new Data Lake implementation for the

Apache Hadoop Distributed File System (HDFS), with the goal of integrating Hadoop tools

for big-data analysis into C3ISP Analytics services.

5.3.4.1. Link to Source Code

The code is hosted on CNR servers, at https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/buffer-

manager/springswagger-template.

5.3.4.2. Source Code Description

Signature of the APIs and their description is reported in the previous pages. The structure of

the source code of the Buffer Manager is shown in the image below:

Figure 31: Buffer Manager code structure

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 52 of 120

The component is implemented as a Spring Boot Application, whose entry point is class

BufferManager; the application’s code is developed in package io.chino.c3isp and its

subpackages. From now on we will refer to the root package as ‘*’.

Here is an overview of the main classes and packages of this component:

 The Buffer Manager API definition is contained inside the

*.buffermanager.restapi.impl.BufferManagerController class; here is

implemented the logic of the API calls.The definition is parsed using swagger-

annotation which produces a web page with the API documentation. This page can be

found by navigating to /swagger-ui.html.

 The package *.buffermanager.restapi.types contains code that is required as part

of the Buffer Manager’s logic. Classes in requests and responses are used for

serialization / deserialization of API requests and responses – mapping is handled by

Spring Boot, which converts JSON objects to POJO and vice-versa.

Package datalakes contains the Data Lake interface (DL) as well as all the planned

implementations (MySQL, file system and HDFS) and some utility classes. The

DataLakeManager is in charge of creating instances of DL; it currently supports

MySQL and file system instances, while the HadoopFSDataLake is a work in progress

and is not considered by the DL manager. DemoDataLake is only used for testing and

as a placeholder for inactive DLs (such as the HDFS implementation). It only returns

stub responses and does not affect a particular storage.

Class Queries contains the SQL statements that are used by the MySQLDataLake

implementation.

 Inside *.buffermanager.security is placed the configuration file of Spring Boot

WebSecurity, where are specified the URLs to be protected by authentication. The

Swagger resources are unprotected, while API are secured with Basic authentication

(username / password).

 Finally, the packages *.formatadapterand *.isi contain the client-side code of the

Buffer Manager, i.e. the API clients that interact with other C3ISP Framework

components. Both clients rely on the OkHttp3 library to communicate with other

components.

The ISI API client is fully tested and active: it can retrieve DPOs as part of the

workflow of /prepareData endpoint.

The Format Adapter API client is still in a testing phase and is not used as part of

the current workflow.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 53 of 120

In conclusion, we provide a list of the dependencies which are required by the Buffer

Manager. The component uses Maven for dependency management.

5.4. Format Adapter

5.4.1. Component description

The Format Adapter is the component of the C3ISP Framework which adapts the format of

CTI data to a STIX standard format to be easily processed by the various C3ISP components.

The Format Adapter is able to detect the actual format of the data and convert it automatically

to the desired format. The component is developed as an API with the OpenAPI specifications

which are implemented thanks to Swagger.

5.4.2. Maturation status

The document “Format Adapter Details” describes all the CTI data to be converted and their

right format.

CTI data Integration Status

Monitoring of connections to malicious hosts -

Monitoring of Domain Generation Algorithm DNS-request -

Email Analysis -

Firewall Schema -

Anti-Malware Schema -

Security Report Sharing -

Figure 32: Dependencies required by the BM

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 54 of 120

Enterprise Pilot (Intrusion Detection Events, Malware Events,

Network Traffic Events, Web Events)
X

5.4.3. Requirement Analysis at M24

postponed

5.4.4. First release of the component

The Format Adapter can be reached through this URL: https://isic3isp.iit.cnr.it:9443/format-

adapter/api-docs/.

Figure 33: Screenshot of Format Adapter Swagger UI

This current release of the Format Adapter automatically detects the CTI format and translates

it into the expected output format (CEF, JSON) embedded in a STIX layer. It can also remove

the STIX layer when needed.

The UI of the Format Adapter enables to upload file and to retrieve the formatted content

from the response body of the request. An example of CTI content, CURL request and

response can be found below:

- CTI content
15-Sep-2017 16:11:43.431 client 192.168.1.2#37239 (www.google.com): query: www.google.com IN A -EDC (192.168.1.9)

15-Sep-2017 16:11:44.474 client 192.168.1.3#57203 (www.rai.it): query: www.rai.it IN A + (192.168.1.9)

- CURL request
curl -X POST "https://isic3isp.iit.cnr.it:9443/format-adapter/api/v1/convert" -H "accept: application/json" -H "Content-Type: multipart/form-data" -F

file=@DNS_Vendor_DNS_CED_1.0_100_DNSquery_5_.txt;type=text/plain

- Response body
{
"spec_version": "2.0",

"type": "stix-bundle",

"id": "stix-bundle--76b7b52f3b67c753b05eb4ed17a95573445250ce",

https://isic3isp.iit.cnr.it:9443/format-adapter/api-docs/
https://isic3isp.iit.cnr.it:9443/format-adapter/api-docs/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 55 of 120

"objects": [
{

"type": "observed-data",

"id": "observed-data--ed54675fba43d3039af4f014da8c23a391901501",

"created": "2018-09-02T22:02:22.789Z",

"modified": "2018-09-02T22:02:22.789Z",

"first_observed": "2018-09-02T22:02:22.789Z",

"last_observed": "2018-09-02T22:02:22.789Z",

"cybox": {
"spec_version": "3.0",

"objects": [

{

"type": "array",

"minitems": "1",

"items": [

[
"CEF:0|DNS_Vendor|DNS_CED|1.0|100|DNSquery|5|src=192.168.1.2 spt=37239 msg=INA-EDC(192.168.1.9) end=1505484703431

dtz=Europe/Berlin",

"CEF:0|DNS_Vendor|DNS_CED|1.0|100|DNSquery|5|src=192.168.1.3 spt=57203 msg=INA+(192.168.1.9) end=1505484704474 dtz=Europe/Berlin"

]

]

}

]

}
}

]

}

5.4.4.1. Link to Source Code

The source code is available at https://isic3isp.iit.cnr.it:9443/format-adapter/api-docs/

5.4.4.2. Source Code Description

The list of the APIs and their description is reported in deliverable D7.3, in Section 5.2.

Figure 34: Format Adapter API code structure

https://isic3isp.iit.cnr.it:9443/format-adapter/api-docs/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 56 of 120

The module is implemented as a NodeJS API whose entry point is the script converter.js.

Below is an overview of the main files and folders of this component.

The folder Converter regroups all the scripts implementing the different format converters:

 antiMalwareToCEF.js: Convert the schema of the Anti-Malware CTI data to STIX

CEF,

 csvToCef.js: Converter the csv file containing the log coming from a router and the

request generated with the BIND DNS to STIX CEF

 dataModel.js: convert the Enterprise Pilot Data Models to STIX CEF

 detect.js: Detect what the original format of the file and choose the correct format

adapter to use

 EmailToJSON.js: Convert email at the eml format to a STIX JSON

 FirewallToCEF.js: Convert the schema of the Firewall CTI data to STIX CEF

 removeStix.js: remove the STIX of a file already converted

 ReportToJSON.js: Convert reports coming from the scan software provided by

Registro.it to STIX JSON

 Swagger.json: Contains swagger UI configuration (hosts, paths, parameters etc)

The folder node_modules contains the dependencies that has been installed.

The folder Resources contains example files that can be used to test the format adapter,

The uploads folder contains temporary files or data needed during the format adaptation,

The file ‘.eslintrc’ is a configuration file for eslint, a pluggable and configurable linter tool

for identifying and reporting on patterns in JavaScript. It helps maintain the quality of quality

with ease.

Config.js: define the hostname, port and scheme.

Package.json: file with all the dependencies that need to be installed to run the module

5.5. DSA Adapter Frontend

5.5.1. Component description

The DSA Adapter Front-End is the entry point of the DSA Adapter subsystem. Due to the

event-driven internal architecture of the DSA Adapter, that is centred on the Event Manager,

it is necessary to offer a REST interface that can be easily consumed by other C3ISP

components and in particular by the ISI API. It is also in charge of checking the

authorizations for each requested operation, against:

- a global ISI authorization policy (configuration policy) and

- each individual DSAs for the requested resources.

Each policy is expressed using XACML and its extension, UPOL, developed under the

umbrella of the C3ISP project.

The DSA Adapter Front-End is in charge of:

- Triggering the internal DSA Adapter operation workflows, by sending the appropriate

event message to the Event Handler

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 57 of 120

- Trigger the authorization/usage control process for each involved resource, as

implemented by the Continuous Authorization Engine and the Obligation Engine.

More in details, the DSA Adapter Front-End is integrated with:

- Continuous Authorization Engine, for the verification of access and usage control

(continuous authorizations) directives

- Obligation Engine, for the enforcement of access and usage control obligations

- Bundle Manager, for the DPO management operations

- DMO Engine, for triggering data manipulation operations

- Event Handler, for exchanging messages with all other components

The DSA Adapter Front-End is implemented using the Spring framework family. It relies on

the latter for exposing a REST interface, as well as for configuration management and

dependency injection.

The DSA Adapter Front-End was not part of the set of assets considered for D8.1 but it is

deemed necessary in order to offer a simplified and synchronous entry point to DSA Adapter

functionalities. This choice allows for decoupling the event-driven paradigm implemented by

the DSA Adapter from the rest of the ISI components, in order to simplify their interaction

model.

At M24, the DSA Adapter Front-End is implemented and supports roughly the available

C3ISP functionalities at their maturation level.

5.5.2. Requirement Analysis at M24

The ISI API was not part of components analysed in D8.1, therefore this section will contain a

list of requirements for the component to be fulfilled by the end of the project.

ID Priority Requirement

C3ISP-Com-

DSAAFE-001

MUST The component must ensure the execution of all

DSA Adapter operation workflows.

C3ISP-Com-

DSAAFE -002

MUST The component must ensure the verification of the

access and usage control conditions for each

requested operation.

C3ISP-Com-

DSAAFE-003

MUST The component must ensure the execution of data

manipulation operations if requested by a DSA.

The requirement analysis may be detailed as follows:

ID MET Description

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 58 of 120

C3ISP-Com-

DSAAFE-001

PARTIALLY The current version of the DSA Adapter Front-End

offers support for DSA Adapter functionalities, but it

has to be updated:

- When new functionalities will be made available

or updated

- With respect to the “move” operation, to support

DPO transfers from Local to Central ISI (see

D7.3)

C3ISP-Com-

DSAAFE -002

PARTIALLY The current version of the DSA Adapter Front-End

provides support access control and usage control

obligations, however only a limited support for

continuous access control.

C3ISP-Com-

DSAAFE-003

PARTIALLY The current version of the DSA Adapter Front-End

provides support for data manipulation operations,

however it must be enhanced with a tighter integration

with DMO Engine, especially in the create DPO

workflow, before a DPO is created.

5.5.3. First release of the component

The first release of the DSA Adapter Front-End runs as a Java application powered by the

Spring framework. Its implementation relies on two main group of classes. One, the Event

Listener, communicates with the Event Handler, sending and receiving messages towards and

from the other DSA Adapter components. The other group is in charge of the implementation

of the functionalities exposed to the ISI API. DSA Adapter Front-End exposes a RESTful API

by means of a number of classes, as detailed in the following Table 4.

Figure 35: DSA Adapter Front-End fine-grained architecture.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 59 of 120

Table 4: DSA Adapter Front-End RESTful methods.

Method Name Note Parameter Example

/v1/create A POST request to the URL with

the parameters as for the example

will trigger the DPO create

workflow. The return element of

the call is a DPO_id for the

submitted file, if call is successful.

The implementation differs from

ISI API in that the call, with the

same parameters, triggers the

creation of a message to the Bundle

Manager for the creation of a new

DPO (message type “bmc”).

HTTP Form with:

- fileToSubmit: input file

- inputMetadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : "ns:c3isp:dpo-

metadata",

 "Value" :

"{\"id\":\"4000123\",\"dsa_id\":\"

DSA-56976731-3c16-46cc-a4e1-

8384c6208eb0\",\"start_time\":\"2

017-12-

14T12:00:00.0Z\",\"end_time\":\"

2017-12-

14T18:01:01.0Z\",\"event_type\":

\"Firewall

Event\",\"organization\":\"3DRep

o\"}",

 "DataType" : "string"

 }]

 }

}

/v1/dpo/<dpo_id> A GET request to this endpoint

(once user is authenticated), if

authorised, will return the DPO

associated to the DPO_id.

Optionally, it is possible to pass

additional parameters to the call

using the metadata format as

specified in the next cell. The

implementation differs from ISI

API in that the call, with the same

parameters, triggers the creation of

a message to the Bundle Manager

for getting a DPO with the

specified DPO_id (message type

“bmr”).

HTTP Header x-c3isp-

input_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired

metadata>,

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}

/v1/dpo/<dpo_id> A DELETE request to this endpoint

(once user is authenticated), if
HTTP Header x-c3isp-

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 60 of 120

authorised, will delete the DPO

associated to the DPO_id.

Optionally, it is possible to pass

additional parameters to the call

using the metadata format as

specified in the next cell. The

implementation differs from ISI

API in that the call, with the same

parameters, triggers the creation of

a message to the Bundle Manager

for the deletion of a DPO with the

specified DPO_id (message type

“bmd”).

input_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired

metadata>,

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}
/v1/move/dpo/<dpo_

id>
A POST request to this endpoint

will trigger a move operation from

a Local ISI to a Central ISI.

Encryption parameters and address

of Central ISI must be configured

by an administrator prior to the call.

Optionally, it is possible to pass

additional parameters to the call

using the metadata format as

specified in the next cell.

HTTP Header x-c3isp-

input_metadata:

{

 "Request" : {

 "Attribute" : [{

 "AttributeId" : <any desired

metadata>,

 "Value" : <metadata value>,

 "DataType" : "string"

 }]

 }

}
/v1/eventNotification

/
A POST request to this endpoint

will trigger the processing of an

incoming message. The DSA API

Front-End registers to a number of

events/messages of interests

(bundle manager create response,

read response, delete response:

respectively bmcr, bmrr, bmdr) and

the Event Handler will call this

method when one of such messages

is received.

HTTP Form with element “event”

of type:

{

 "additionalProperties" : {

 "property1" : <any desired

value>,

 "property2" : <any desired

value> …},

 "eventType" :

<bmcr|bmrr|bmdr>,

 "sessionId" : "string"

 }

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 61 of 120

5.5.3.1. Link to Source Code

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/dsa-adapter-frontend/dsa-adapter-

frontend (binary)

5.5.3.2. Source Code Description

The list of the APIs and their description is reported in deliverable D7.3, in Section 5.1.1.

The structure of the source code of the DSA Adapter Front-End can be depicted as in Figure

36.

The main package eu.c3isp.dsa.adapter.frontend.restapi contains the ApplicationDeployer

class, in charge of enabling the Spring framework activation for the web application.

The package eu.c3isp.dsa.adapter.frontend.restapi.impl contains the definition and

implementation of the Event Listener class, required for interacting with the Event Handler,

plus some utility classes.

Package eu.c3isp.dsa.adapter.frontend.restapi.impl.ops, instead, contains the class definitions

for all exposed REST methods, each of them exposed by one class.

Package eu.c3isp.dsa.adapter.frontend.restapi.types caters for all the model class definitions.

Metadata object containers are defined here for each of the exposed REST methods.

Package eu.c3isp.dsa.adapter.frontend.restapi.xacml contains some utility classes and

metadata object containers to allow a transformation from C3ISP JSON objects to XACML

JSON objects, used to create authorization check requests and interpret the associated

responses, as coming from the Continuous Authorization Engine.

Lastly, eu.c3isp.dsa.adapter.frontend.restapi.security has the Spring security initialization.

Figure 36: The DSA Adapter Front-End source code packages from the Eclipse IDE.

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/dsa-adapter-frontend/dsa-adapter-frontend
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/dsa-adapter-frontend/dsa-adapter-frontend

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 62 of 120

5.6. Event Handler

5.6.1. Component description

The Event Handler is a component in charge of dispatching messages (events) to its fellow

DSA Adapter components. It implements a publish-subscribe message passing pattern. It is a

Java web application that exposes a RESTful interface.

The importance of the Event Handler in the DSA Adapter architecture is to allow a

transparent management of workflow and processes, to the benefit of the Usage Control

components (Continuous Authorization Engine and Obligation Engine). Each member of the

DSA Adapter has full visibility of the actual resources managed by the DSA Adapter and

react accordingly, if needed. It is then possible, for example, for each of the two to interrupt

the ongoing processing of a resource, in case the associated usage control directives

(continuous conditions or usage control obligations) prescribe to do so.

The Event Handler is implemented using the Spring framework family. It relies on the latter

for exposing a REST interface, as well as for configuration management and dependency

injection.

5.6.2. Maturation status

The Event Handler was not part of the set of assets considered for D8.1 but it is deemed

necessary in order to achieve transparency and to support the delivery of the DSA Adapter

functionalities.

At M24, the DSA Adapter Front-End is implemented and it is deemed in a stable release. It

currently supports the dispatching of events in an extensible message format, so that new

event types can be freely supported without requiring any code modification. For these

reasons, it is foreseen that no or minor adjustments to the implementation may come by the

end of the project, while modifications and new message definitions may come as the C3ISP

functionalities will extend.

5.6.3. Requirement Analysis at M24

The Event Handler was not part of components analysed in D8.1, therefore this section will

contain a list of requirements for the component to be fulfilled by the end of the project.

ID Priority Requirement

C3ISP-Com-EH-001 MUST The component must be able to support the

exchange of all needed messages among DSA

Adapter components.

C3ISP-Com-EH-002 MAY DSA Adapter components must be able to

subscribe and receive message of interest in

“push” (i.e., Event Handler transmits to the

component a message of interest as soon as it is

made available) _or in “pull” mode (components

periodically poll the Event Handler for messages

of interest received since their last poll).

The requirement analysis may be detailed as follows:

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 63 of 120

ID MET Description

C3ISP-Com-

EH-001

YES The current version of the Event Handler offers full

support to message exchanges in the DSA Adapter.

C3ISP-Com-

EH-002

PARTIALLY The current version of the Event Handler provides

support for “push” interaction model, while there is only

an initial support for “pull” model, essentially in the API

definition.

5.6.4. First release of the component

The first release of the Event Handler runs as a Java application powered by the Spring

framework. The core of the component is the Event Listener class: it exposes a method

(“notifyEvent”) to notify events to DSA Adapter components that previously subscribed to

that message/event type. The same class caters for a number of functionalities to manage the

subscription of a component to the Event Handler and get the list of subscribed messages.

The Event Handler interface is secured with authentication and authorization features. In fact,

as the central element of the DSA Adapter, it must be protected from misuses that may

compromise the good enforcement of the DSA prescriptions.

The definition of message types at M24 is as follows.

Message ID Main

Involved

Component

Description

tryaccess Continous

Autorization

Engine,

Obligation

Engine

This message type is used to verify the

authorization (access control) of a requested

operation.

tryaccess_response Continous

Autorization

Engine,

Obligation

Engine

This message type contains the evaluation of an

associated tryaccess.

tryaccess_multi Continous

Autorization

Engine,

Obligation

Engine

This message type permits to trigger a special

access control verification for multiple resources,

especially useful for complex analytics operations

with multiple applicable policies.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 64 of 120

tryaccess_multi_respo

nse

Continous

Autorization

Engine,

Obligation

Engine

This message type contains the evaluation of an

associated tryaccess_response.

startaccess Continous

Autorization

Engine,

Obligation

Engine

This message type informs the DSA Adapter

component that a requested resource is now being

processed by the requestor.

startaccess_response Continous

Autorization

Engine,

Obligation

Engine

This message type acknowledges the beginning of

a processing session communication.

endaccess Continous

Autorization

Engine,

Obligation

Engine

This message type is used to notify the

termination of a processing session for a resource.

endaccess_response Continous

Autorization

Engine,

Obligation

Engine

This message type is the acknowledgement of the

previous endaccess message.

revoke Continous

Autorization

Engine,

Obligation

Engine

This message type interrupts a processing session

previously authorized

bmc Bundle

Manager, DSA

Adapter Front-

End

This message type asks to create a new DPO

though the Bundle Manager.

bmcr Bundle

Manager, DSA

Adapter Front-

End

This message type caters for the result of a

previously requested bmc.

bmr Bundle

Manager, DSA

Adapter Front-

End

Message type used to demand the retrieval of a

DPO, in clear text.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 65 of 120

bmrr Bundle

Manager, DSA

Adapter Front-

End

This message type caters for the result of a

previously requested bmr.

bmd Bundle

Manager, DSA

Adapter Front-

End

Message type used to demand the deletion of a

DPO.

bmdr Bundle

Manager, DSA

Adapter Front-

End

This message type caters for the result of a

previously requested bmc.

dmoe DMO Engine,

Obligation

Engine

Message type used to start a Data Manipulation

Operation.

dmoer DMO Engine,

Obligation

Engine

This message type caters for the result of a

previously requested dmoe.

Table 5: Event Handler RESTful methods.

Method Name Note Parameter Example

/v1/events A GET request is used to retrieve

messages of a specific message type,

previously subscribed.

HTTP query string with:

- subscriptionURL: URL

used to subscribe to the

service

/v1/notifyEvent A POST request to this endpoint

permits to notify an event (message)

to all subscribers of that message

type.

HTTP Body:

{

 "additionalProperties" : {

 "Attribute" :

<any desired value>, …},

 "eventType" : <event type

value>,

 "sessionId" : "string"

 }

/v1/subscribe A POST request to this endpoint

permits to subscribe a URL to a

message feed of a specified message

HTTP Body:

{

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 66 of 120

type. An additional parameter

specifies a “pull” subscription,

otherwise “push” model is selected

per default.

 "additionalProperties" : {

 "Attribute" :

<any desired value>, …},

 "eventType" : <event type

value>,

 "URL" : "string"

 }

/v1/unsubscribe A POST request to this endpoint will

unsubscribe a URL from a message

feed for a specified message type.

HTTP Body:

{

 "additionalProperties" : {

 "Attribute" :

<any desired value>, …},

 "eventType" : <event type

value>,

 "URL" : "string"

 }
/v1/subscribers A GET request to this endpoint will

retrieve all subscribers for a specified

message type.

HTTP query parameter:

eventType: event type acronym

5.6.4.1. Link to Source Code

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/event-handler/event-handler

(binary)

5.6.4.2. Source Code Description

The list of the APIs and their description is reported in deliverable D7.3, in Section 5.1.2.

The main package eu.c3isp.isi.dsaadapter.eventhandler.restapi contains the

ApplicationDeployer class, in charge of enabling the Spring framework activation for the web

application.

The package eu.c3isp.isi.dsaadapter.eventhandler.restapi.impl contains the definition and

implementation of the Event Handler class, that exposes all methods.

Package eu.c3isp.isi.dsaadapter.eventhandler.restapi.types caters for all the model class

definitions. Metadata object containers are defined here for each of the exposed REST

methods.

Lastly, eu.c3isp.isi.dsaadapter.eventhandler.restapi.security has the Spring security

initialization.

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/event-handler/event-handler

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 67 of 120

Figure 37: The Event Handler source code packages from the Eclipse IDE.

5.7. Continuous Authorization Engine

5.7.1. Component description

The Continuous Authorization Engine (CAUTHENG) is an authorization engine which

allows the control of the usage of resources according to the Usage Control Model (UCON)

defined in [20]. In particular, this component performs the authorization decision process both

at access request time (such as in traditional access control models), to decide whether the

access to the resource can be started, and continuously during the access time (i.e., while the

resource is in use), to decide whether the access to the such resource can go on or must be

terminated because of a policy violation or some countermeasures must be taken. The UCON

model fits well those modern and dynamic scenarios, such as the ones of the C3ISP pilots,

where resources, i.e., data, involved in computations that could last for a long time must be

protected by security policies and where the access context could change while the usage of

such data (or of the results derived from them) is still in progress. As a matter of fact, the

UCON features are meant to guarantee that the right of a subject to use resources hold not

only at access request time, but also while the usage is in progress.

This component has originally been developed by the Coco Cloud EU FP7 project (GA

#610853), and within the C3ISP project is being maturated in order to accommodate the

features of the C3ISP scenario and of the related pilots, as will be described in the following.

In particular, at M24 the CAUTHENG component has been maturated in order to be exploited

in the DSA Adapter component of the ISI subsystem to enforce the usage control polices

defined by the DSA paired with the CTIs. In the next prototype release, at M34, the

CAUTHENG component will be further extended to be part of the Service Usage Control

Adapter, to protect the usage of the C3ISP analytics services as well.

5.7.2. Maturation status

The original architecture and functionality of the CAUTHENG component were described in

detail in deliverable D8.1, and they have been extended at M24 to deal with the features of the

C3ISP scenario, and to meet the Requirements initially defined in deliverable D7.1 and

refined for the CAUTHENG component in deliverable D8.1.

In the following we describe the maturations that have been addressed at M24, and we list the

maturations that are still to be addressed to allow the full exploitation of the CAUTHENG in

the C3ISP framework.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 68 of 120

5.7.2.1. Access Requests with Multiple Resources

The first maturation of the CAUTHENG component required to accommodate the C3ISP

scenario concerns the content of access requests. As a matter of fact, in the original

CAUTHENG component, an access request involves the control on the usage of a SINGLE

resource. Instead, an access request in C3ISP involve a SET of resources, the CTIs, which

will be involved in the computation of an analytics to produce the required result. This set of

CTI is passed by the user requesting the execution of the analytics either by explicitly

indicating the ID of each or them in the request, or by defining the search criteria which will

be used to query the DPOS to obtain such ID list. Instead, in other words, a usage session in

C3ISP concerns multiple resources, while the original CAUTHENG component was designed

to support session concerning a single resource only.

Hence, the original architecture of the CAUTHENG component has been updated in order to:

 Accept access requests including list of resource IDs instead of a single ID;

 Perform the policy evaluation process for each of the resource in such resource list,

both at request time and continuously while the usage of such CTIs is in progress;

 Keep track of which resources are involved in each usage session;

 Combine the access decision results produced for the set of CTIs involved in a single

request in order to obtain the final set of CTIs that can be exploited to compute the

analytics while respecting the usage control policies of all the CTIs in the request.

5.7.2.2. Usage Control Policy Refinement

The second maturation required to deal with the C3ISP scenario concerns the kind of

constraints that can be defined in the usage control policies paired with the data, and the

related policy evaluation process. As a matter of fact, the original CAUTHENG component,

manages access requests involving a single resource only and, consequently, is able to

evaluate policies defining constraints that take into account the attributes related to this single

resource, to the access requestor and to the environment. Instead, the C3ISP scenario requires

that the usage control policies are able to express constraints concerning not only the

resources they are paired to, but also third resources. In particular, the policy paired with a

specific CTI C includes also rules which restricts the set of other CTIs with which C can be

processes. In other words, the owner of a CTI could define policy rules to avoid that his CTI

is used to perform an analytic with other specific CTIs, for instance produced by a competitor.

Hence, the original architecture of the CAUTHENG component has been updated in order to

evaluate the new rules of the policy, and to properly combine the set of results related to the

CTIs included in the same access request to determine the set of CTIs that will be used to

perform the analytics.

5.7.2.3. Requirement C3ISP-ComCAE-004 : Exploit Contextual

Information

The third maturation to be performed on the CAUTHENG component is determine by

Requirement C3ISP-ComCAE-004 defined in deliverable D8.1, which was only partially met

by the original CAUTHENG component. In particular, this requirement states that the

component should be able to retrieve the contextual information for the evaluation of the DSA

paired with the CTIs. This requirement was marked as partially met because the original

CAUTHENG component can be configured to exploit external source of information called

Attribute Managers, for retrieving the current values of the attributes which represents the

context in which the access and the usage of the CTIs is being performed. This integration

only requires the development of proper additional components, called Policy Information

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 69 of 120

Points, which can be seen as plugins allowing the CAUTHENG component to interact with

Attribute Managers.

At M24 we identified two main sources of contextual information that can be used for the

usage control policies:

 The Identity Service, which is paired with a Lightweight Directory Access Protocol

(LDAP) service, providing information about the users of the C3ISP platform

 The MYSQL Service, which is a new service that has been deployed in the C3ISP

platform to manage the some of the attributes concerning the resources.

Hence, the original architecture of the CAUTHENG component has been updated in order to

add two PIP which allow the interaction with the AMs previously described.

5.7.2.4. Requirement C3ISP-ComCAE-010: Exploit User ID

The forth maturation of the CAUTHENG component that has been implemented is related to

Requirement C3ISP-ComCAE-010 defined in deliverable D8.1, which was only partially met

by the original CAUTHENG component. This requirement states that the CAUTHENG

component must be able to exploit the user ID in the usage decision process. As a matter of

fact, the user who exploits the C3ISP platform is authenticated when he submits his access

request, and the related user ID is passed to the CAUTHENG component by representing it as

an attribute of the user. This ID is then exploited to retrieve further attributes concerning the

user by querying the Identity service.

5.7.2.5. Other Maturations still to be addressed

Other maturations of the CAUTHENG component are required to address all the features of

the C3ISP scenario and to meet all the Requirements defined in deliverable D8.1 for the

CAUTHENG component. These maturations will be addresses in the next release of the

prototype, at M34, and concerns the fulfilment of Requirements C3ISP-ComCAE-07, C3ISP-

ComCAE-11, and C3ISP-ComCAE-12.

5.7.3. Requirement Analysis at M24

Table 6 – Continuous Authorization Engine Tool Requirements Status

ID MET Description

C3ISP-Com-

CAE-001

YES The current version of the tool is able to enforce both the

access and usage control policies embedded in the DSA

paired with the data shared with the Prosumers which

define the controls to be performed to regulate the data

sharing

C3ISP-Com-

CAE-002

YES The current version of the tool is able to evaluate the

DSA paired with the data, to perform the decision process

and determine whether to grant the access or not.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 70 of 120

C3ISP-Com-

CAE-003

YES The current version of the tool is able to allow usage

control on the shared data by continuously evaluating the

DSA paired with the data, and by performing the decision

process when the access context is changed in order to

determine whether to interrupt the access in progress or

not.

C3ISP-Com-

CAE-004

YES The tool has been configured in order to retrieve the

contextual information from the Identity Manager Service

and from the MYSQL service, and to process them in

order to be exploited for the evaluation of the DSA paired

with the data.

C3ISP-Com-

CAE-005

YES The tool is able to evaluate the DSA to support the

Obligation Engine to decide whether an obligation

expressed in the DSA (e.g., sending a notification) must

be performed before, during, or after the end of the

operation into.

C3ISP-Com-

CAE-006

YES The tool is able to evaluate the DSA to support the

Obligation Engine to decide whether an obligation

expressed in the DSA (which can be used to express data

manipulation operations) must be performed before,

during, or after the end of the operation.

C3ISP-Com-

CAE-007

PARTIALLY A further component which compute the risk of data

sharing must be developed. This component should act as

AM. The tool must be configured to consider the risk of

data sharing as a new attribute.

C3ISP-Com-

CAE-008

YES The language currently supported by the tool is UPOL, an

extension of XACML developed within the Coco Cloud

EU FP7 project.

C3ISP-Com-

CAE-009

YES The tool is able to evaluate the DSA to support the

Obligation Engine to support the Obligation Manager to

enforce the obligations expressed in the DSA, which can

be used to express data manipulation operations on the

result of the operations.

C3ISP-Com-

CAE-010

YES The tool has been configured in order to exploit the user

ID obtained in the authentication process in the access

and usage decision process by representing it as an

attribute of the user, and by using it to retrieve further

attributes of the user.

C3ISP-Com-

CAE-011

PARTIALLY The tool must be instrumented to support multi-tenancy.

C3ISP-Com- PARTIALLY The impact of the policy enforcement on the performance

of the analytics operations depends on several factors.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 71 of 120

CAE-012 The performance will be analysed for each use case and

proper optimization will be proposed where necessary.

5.7.4. First release of the component

The original architecture of the CAUTHENG component, which is extensions the XACML

reference architecture described in [XACML] and has been described in D8.1, has been

further extended in order to implement the maturations listed in the previous section required

for addressing the requirement of the C3ISP platform and pilots.

In Figure 38, it shows the new internal architecture of the CAUTHENG component, and in

the following we give a description of the new components as well as we report a short

description of the original ones.

Figure 38: Components of the Continuous Authorization Engine

5.7.4.1. Multi-Resources Handler (MRH):

This component has been added in the CAUTHENG component architecture with respect of

the version described in deliverable D8.1 as result of the maturation process, to address the

specific features of the C3ISP platform and of the pilots use cases. As a matter of fact, the

original CAUTHENG component was able to deal with access requests concerning one

resource only, in order to authorize an operation to be performed on that resource taking into

account in the access decision process the attributes of that resource only. Instead, in the

C3ISP scenario, the execution of a single analytic function concerns a set of CTIs, not a single

CTI at a time only, because one of the strengths of such analytic is to provide better results

exploiting multiple data provided by distinct data sources.

Consequently, each access request sent to the CAUTHENG component concerns multiple

resources at the same time, i.e., the set of CTIs on which the user wants to execute the

specified analytics. Hence, with respect to the original version of the CAUTHENG

component, the integration within the DSA Adapter component of the ISI subsystem required

a modification of the architecture, i.e., the introduction of this new component called Multi-

Resources Handler to deal with access requests involving multiple resources.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 72 of 120

The MRH is hence a new interface of the CAUTHENG component, and it exposes new APIs

accepting multiple resources access requests which are invoked by the Event Handler to

perform the usage decision process on set of CTIs. However, the protocol is still defined by a

subset of the usage control actions: tryaccess, permitaccess, denyaccess, revokeaccess, and

endaccess (see [5, 6, 7] for further details), as for the CH component. The details concerning

the interactions among the Event Handler and the MRH are described in deliverable D7.3, in

Section 5.1.3.

As shown in Figure 39, the MRH intermediates the interactions between the Event Handler

and the original CH. The MRH component is also in charge of extending the workflow of the

policy evaluation process to accommodate the evaluation of access requests involving

multiple CTIs. In particular, this component interacts with the Event Handler accepting access

requests involving multiple CTIs, performs a loop cycle to ask to the original Usage Control

systems to evaluate the usage control policy of each of them (i.e., interacting with the original

CH exploiting the original protocol), collects all the decision responses, and interacts with the

Decision Combiner component to combine such responses in order to define the final set of

CTIs for the analytics the be performed. As shown in the following, the Decision Combiner

component will determine the final set of CTIs according to given criteria.

5.7.4.1.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

5.7.4.1.2. Source Code Description
The MRH source code structure is depicted in Figure 39.

Figure 39: MRH code structure

The MRH exposes the set of APIs whose signature is reported in the

EventHandlerInterface.java file, of the it.cnr.iit.multiresourcehandler.impl package, whilst

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 73 of 120

their actual implementation is reported in the MultiResourceHandlerImpl.java file of the same

package. The MultiSession Manager code can be found in the related folder.

The MRH is interfaced with the Event Handler, according to a Publish/Subscribe schema.

Hence at boot the MRH registers to the EventHandler via the subscribe API for a set of

events, exposing to the EventHandler the REST API to be called whenever a processable

message has been received (rest_callback), together with the type of event (event_type). The

it.cnr.iit.multiresourcehandler.utility package includes a set of utility functions, such as the

message tracker, which keeps track of the message exchanged with the EventHandler.

5.7.4.2. Decision Combiner (DC)

The Decision Combiner component has been added in the CAUTHENG component

architecture with respect to the original version described in deliverable D8.1 as a result of the

maturation process. As a matter of fact, this component has been added to provide a

functionality to manage multi resource access requests.

The DC is invoked by the MRH after that the decision processes concerning each single CTI

have been made, in order to determine the final set of CTIs on which the requested analytics

will be performed that will be returned to the Event Handler. In particular, as explained in

Section 5.7.2.2, the CTI protection needed for the C3ISP pilots states that the DSA paired

with each CTI C includes rules which define constraints concerning the set of CTIs to which

C can belong to in order to execute a given analytics. In other words, such policy could state

that C cannot be processed by a given analytics in a set of CTIs S where the other member of

S does not satisfy a set of rules, still defined on the basis of the attributes paired with such

CTIs. For instance, a CTI producer could add to the DSA paired to his CTIs a rule to avoid

that such CTIs are used to perform any analytic involving the CTIs produced by a competitor.

The main aim of the DC component is to determine the set of CTIs on which a given analytics

will be executed in such a way that a specified objective function is satisfied while the

policies paired with all the CTIs included in such set are all satisfied. In general, many distinct

objective functions can be defined, depending on the requirement of the specific analytics to

be performed or on the preferences of the user who requested to perform such analytics. A

simple example of objective function could be the maximization of the number of CTIs

involved in the analytics. Another objective function that could be defined could be aimed at

determining the larger set of CTIs that have not been anonymized. In the prototype released at

M24 a very simple objective function is provided. More complex objective functions that will

be defined according to Pilots requirements, will be available in the second release of the

prototype.

5.7.4.2.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

5.7.4.2.2. Source Code Description
The decision combiner is currently under development and will be described in the following

deliverables.

5.7.4.3. Multi Session Manager (MSM)

The Multi Session Manager component is the third component which has been added to the

CAUTHENG component architecture with respect to the original version described in

deliverable D8.1 as result of the maturation process. As for the previous two components, the

MSM has been added to provide functionality to manage multi resource access requests.

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 74 of 120

The main task of this component is to keep track of a set of data to connect the usage session

of each single CTI (which is managed by the original SM) with the multi resource access

request it belongs to.

5.7.4.3.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

5.7.4.3.2. Source Code Description
The Session Manager is a subcomponent of the MRH, hence its code is part of the MRH

project, depicted in Figure 39. The code of the MultiSession handler is reported in the

MultiSessionManager.java class.

5.7.4.4. Context Handler (CH)

The Context Handler was present in the CAUTHENG architecture from its original version.

In the original version, the CH was the entry point of the CAUTHENG component, managing

the protocol for communicating with the Event Handler. This protocol is defined by a subset

of the usage control actions: tryaccess, permitaccess, denyaccess, revokeaccess, and

endaccess (see [5, 6, 7] for further details). In the current version of the CAUTHENG

component, the CH communicates with the MRH, which intermediates the interactions with

the Event Handler. As explained before, this change was required to enable the CAUTHENG

component to deal with multi resources access requests. The CH coordinates the interactions

among the original internal components of the CAUTHENG architecture for the execution of

the policy evaluation process, while the MRH is in charge of coordinating the interactions

among the CH and the new components of the CAUTHENG architecture;

5.7.4.4.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

5.7.4.4.2. Source Code Description
The list of the APIs and their description is reported in deliverable D7.3, in Section 5.1.3. The

CH code is defined in the iit.cnr.it.usagecontrolframework.contexthandler package, reported

in Figure 40.

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 75 of 120

Figure 40: Core of the CAUTHENG source code

Despite its complexity, the CH is implemented with clear understanding through a single Java

file.

5.7.4.5. Session Manager (SM)

The Session Manager was present in the CAUTHENG architecture from its original version.

The task assigned to this component and its behaviour have not been changed with respect to

the original version of the component. As a matter of fact, this component is still responsible

for keeping track of the ongoing usage sessions, i.e., of the access that are currently in

progress, and it exploits an Access Table (AT) to store the meta-data regarding these sessions.

It is the key component of the continuous authorization phase, and it represents an extension

with respect to the XACML reference architecture defined in [XACML];

5.7.4.5.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

5.7.4.5.2. Source Code Description
The code of the session manager is implemented as a set of interfaces exploiting the proxy

design pattern, to ensure the communication with different physical configurations of the

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 76 of 120

database implementing the SM. The source code can be found in the

ProxySessionManager.java class file, shown in Figure 40.

5.7.4.6. Policy Decision Point (PDP)

The Policy Decision Point was present in the CAUTHENG architecture from its original

version. The task assigned to this component has not been changed with respect to the original

version of the component. The PDP evaluates security policies and produces the access

decision. The security policies are expressed using the XACML standard because the usage

control specific features are managed by the CH and by the SM;

5.7.4.6.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

5.7.4.6.2. Source Code Description
For the implementation of the Policy Decision Point we adopted an existing tool, WSO2

balana10. This tool provides all the features of a XACML engine described by the XACML

standard [XACML] Since the CAUTHENG implementation follows the XACML standard,

other tools could be easily integrated in the CAUTHENG component replacing WSO2 balana.

The interface to the Balana PDP is also implemented through the proxy design pattern. The

implementation can be found in the class ProxyPDP.java reported in Figure 40.

5.7.4.7. Attribute Managers (AMs)

Attribute Managers are components which manage the attributes that are required to evaluate

the usage control policy, allowing to retrieve their current values, and sometimes to update

them. Each application scenario has its own attributes, which describe the security relevant

features of subject, resource and environment for that specific context. Consequently, each

scenario identifies a potentially distinct set of Attribute Managers.

The maturation process of the CAUTHENG component identified two relevant Attribute

Managers providing attributes that are exploited by Usage Control policies defined in the

DSAs of the C3ISP pilots, namely:

 Identity Manager Service: this component is provided by the Common Security

Services subsystem, and it provides information about the C3ISP users through an

LDAP service, such as the organization the user works for, the projects the user is

involved in, and others.

 MYSQL service: this component has been added to the DSA Adapter component

architecture with respect to the original version described in deliverable D8.2.

The two previous AMs have their own protocols, and we defined two specific Policy

Information Points for interacting with them exploiting those protocols;

5.7.4.7.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

10 WSO2 Balana implementation: https://github.com/wso2/balana

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 77 of 120

5.7.4.7.2. Source Code Description
The MYSQL Attribute Manager, instead, is based on a standard MySQL database. The

offered APIs are the standard JDBC functions to query the DB via SQL queries.

5.7.4.8. Policy Information Points (PIPs)

The Policy Information Points are the interfaces exploited by the CH for interacting with the

Attribute Managers to retrieve the current values of the attributes required to evaluate the

Usage Control Policy. PIPs are required because distinct Attribute Managers typically support

different protocols, and PIPs mimic a plug-in architecture to let the CH be unaware of that

specific protocols. In particular, the proposed architecture includes a set (chain) of PIPs which

provide the same interface to the CH (retrieve, subscribe/unsubscribe and update), while each

PIP implements the specific protocol to interact with the Attribute Manager is paired with,

and the specific algorithm to perform the requested operation and to provide the required

information.

Since, the maturation process of the CAUTHENG component identified two relevant

Attribute Managers, described in the previous section, the two related PIPs have been

developed:

 LDAP PIP: This PIP is the dual component of the LDAP AM. It retrieves information

related to the user accessing the C3ISP services, such as name, role, department, etc.

MySQL PIP: This PIP is the dual component of the MySQL AM. It is used to query

different kind of information stored in a DB, whose parameters and structure are set in

a static configuration file. Since the MySQL AM does not include any mechanism for

subscription, the PIP needs to periodically query the value of the attributes that are

mutable. The period is a parameter that can be set.

5.7.4.8.1. Link to Source Code
The link to SVN for the source code is available at: https://devc3isp.iit.cnr.it:8443/c3isp-

wp8/isi/dsa-adapter/CAUTHENG

5.7.4.8.2. Source Code Description
The source code of the two PIPs are two separated project whose structure is depicted

respectively in Figure 41 and Figure 42. This choice is due to the fact that PIPs are

implementation of an abstract class and are specific for every use case, needing ad hoc

development.

Figure 41: PIP LDAP code structure

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG
https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/CAUTHENG

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 78 of 120

Figure 42: PIP MySQL code structure

5.8. Obligation Engine

5.8.1. Component description

The Obligation Engine is a component that allows the execution of pre-determined operations

when specific conditions occur. Such operations are defined as Usage Control Obligations

that are included in an enforceable policy, that is, the DSA associated to a specific piece of

information. The enforceable policy is expressed in UPOL language, a security policy

language developed in the Coco Cloud EU FP7 project (GA #610853) and under extension in

C3ISP.

5.8.2. Maturation status

The Obligation Engine implementation has significantly matured has foreseen in the previous

D8.1. The main driver such process is the need to cope with data volume and velocity, typical

characteristics of big data deployments.

We recall that the obligation can be described as follows:

 Usage Control Obligation = do Action when Trigger

Where Trigger is defined by:

 Trigger = Event AND Condition

For this reason, the actual implementation relies on two different engines, the trigger and the

action engines. The trigger engine is the entry point of the obligation engine, as it caters for a

method to submit a new obligation. Once called, this method sets up a new trigger set,

configured with the associated action(s) according to the obligation definition.

The trigger and action engines use a library, MapDB11, that provides concurrent Maps, Sets

and Queues backed by disk storage or off-heap-memory. It is a fast and easy to use embedded

Java database engine. MapDB allows for handling dynamic registration of actions and

management/set up of triggers.

Notably, following to design review sessions held during Y2, it was possible to analyse and

decompose the Obligation Engine use cases and observe strong similarities among the

Obligation Engine, the DMO Engine and the Enterprise pilot C3ISP Gateway. For this reason,

the implementation of these 3 components share some parts, to allow for a rational usage and

allocation of development resources.

11 https://github.com/jankotek/mapd

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 79 of 120

5.8.3. Requirement Analysis at M24

The following Table 7 analyses the fulfilment of Obligation Engine requirements as defined

in deliverable D8.1. A general improvement on the fulfilment of practically all requirements

can be observed, going towards the achievement of all objectives for the component by the

end of the project.

Table 7: Obligation Engine requirement analysis.

ID MET Description

C3ISP-Com-

OBE-001

YES/ONGOI

NG

The current implementation supports the triggers and

actions needed at M24 for data sharing operations. More

triggers are expected to be defined and implemented by

the end of the project.

C3ISP-Com-

OBE-002

YES/ONGOI

NG

The current implementation supports the triggers and

actions needed at M24 for data analytics operations. More

triggers are expected to be defined and implemented by

the end of the project.

C3ISP-Com-

OBE-003

PARTIALLY The Anonymization Engine results fully integrated with

the Obligation Engine while more work is needed for the

FHE component.

C3ISP-Com-

OBE-004

YES

(unchanged)

Certain audit obligations (generation of audit trails, email

sending etc.) are already supported by the current

implementation. Adaptations or further extensions may be

needed, though.

C3ISP-Com-

OBE-005

YES/ONGOI

NG

The actual connection with the DMO Engine exists but it

will be enhanced when the DMO Engine will be fully

implemented.

C3ISP-Com-

OBE-006

YES/ONGOI

NG

The Obligation Engine can trigger any necessary

operation needed to estimate the risk associated to an

operation, when this process is modelled as a supported

obligation. Concrete measures are yet to be identified and

thus implemented.

C3ISP-Com-

OBE-007

PARTIALLY The actual connection with the DMO Engine exists but it

will be enhanced when the DMO Engine will be fully

implemented.

C3ISP-Com-

OBE-008

YES/ONGOI

NG

At this stage, the actual implementation of the Obligation

Engine seems to cope with the required performance

requirements. Further analysis will be conducted before

the end of the project.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 80 of 120

5.8.4. First release of the component

The first release of the Obligation Engine is composed of two different modules, the Trigger

and the Action Engines. Both run as Java applications powered by the Spring framework,

exposing RESTful interfaces.

The source code of the two project is structured similarly. Both rely on the MapDB library to

maintain and persist configuration information. They expose methods for the dynamic

management of triggers and actions. The respective RESTful methods are detailed in the

following:

Table 8: Trigger Engine RESTful methods.

Method Name Note Parameter Example

/v1/obligation A POST request to the URL

with the parameters as for

the example will register a

new obligation in the

Trigger and Action engine.

The return element of the

call is a HTTP status code,

with 200 meaning a

successful registration.

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

name>,

 "parameterValue" : <value>,

 "DataType" : "string"

 }],

"triggerId" : <value>,

 }

/v1/trigger A POST request to the URL

with the parameters as for

the example will register a

new trigger implementation.

The input JSON contains

the endpoint to call the

trigger, an triggerId

identifier and all required

parameters for the call. The

return element of the call is

a HTTP status code, with

200 meaning a successful

registration.

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

name>,

"parameterPassingMode" :

<GET|PATH|QUERY>,

 "DataType" : "string"

 }],

"triggerId" : <value>,

"endPoint" : <value>,

"httpMethod" : <HTTP VERB>

 }

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 81 of 120

/v1/trigger A GET request to this

endpoint, will return a list of

actions registered in the

Trigger Engine.

No parameters are needed.

/v1/activate A POST request to this

endpoint (once user is

authenticated), if authorised,

will set up a trigger

(specified with triggerId)

with the specified

parameters using the

metadata format as specified

in the next cell.

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

name>,

 "parameterValue" : <value>,

 "DataType" : "string"

 }],

"triggerId" : <value>,

 }
/v1/trigger/trigger-at-time A POST request to this

endpoint will set up a new

trigger at a specified time.

HTTP query string:

 dpo_id : <dpo_id value>

/v1/eventNotification This method allows to

receive asynchronous

notifications from the Event

Handler.

HTTP Body:

{

 "additionalProperties" : {

 "Attribute" :

<any desired value>, …},

 "eventType" : <event type

value>,

 "sessionId" : "string"

 }

Table 9: Action Engine RESTful methods.

Method Name Note Parameter Example

/v1/action A POST request to the URL with

the parameters as for the example

will register a new action. The

input JSON contains the endpoint

to call the action, an actionId

identifier and all required

parameters for the call. The return

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 82 of 120

element of the call is a HTTP status

code, with 200 meaning a

successful registration.

name>,

"parameterPassingMode" :

<GET|PATH|QUERY>,

 "DataType" : "string"

 }],

"actionId" : <value>,

"endPoint" : <value>,

"httpMethod" : <HTTP VERB>

 }

/v1/action A GET request to this endpoint,

will return a list of actions

registered in the Action Engine.

No parameters are needed.

/v1/execute A POST request to this endpoint

(once user is authenticated), if

authorised, will execute an action

(specified with actionId) with the

specified parameters using the

metadata format as specified in the

next cell.

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

name>,

 "parameterValue" : <value>,

 "DataType" : "string"

 }],

"actionId" : <value>,

 }
/v1/action/delete-dpo A DELETE request to this endpoint

will trigger the deletion of a DPO

from the ISI.

HTTP query string:

 dpo_id : <dpo_id value>

/v1/eventNotification This method allows to receive

asynchronous notifications from the

Event Handler.

HTTP Body:

{

 "additionalProperties" : {

 "Attribute" :

<any desired value>, …},

 "eventType" : <event type

value>,

 "sessionId" : "string"

 }

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 83 of 120

5.8.4.1. Link to Source Code

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/obligation-engine/trigger-engine

(binary)

5.8.4.2. Source Code Description

The list of the APIs and their description is reported in deliverable D7.3, in Section 5.1.4.

The structures of the Trigger and Action engines are similar. They both share the same

persistency management (based on MapDB, as mentioned) and the RESTful method structure.

More in details:

The main packages eu.c3isp.oe.te and eu.c3isp.oe.ae contain the ApplicationDeployer classes,

in charge of enabling the Spring framework activation for the web applications.

Packages eu.c3isp.oe.te.persistency and eu.c3isp.oe.ae.persistency contain the persistency

management implementation using MapDB.

The packages eu.c3isp.oe.te.restapi.impl and eu.c3isp.oe.ae.restapi.impl contain the definition

and implementation of the Event Listener class, required for interacting with the Event

Handler, together with all management classes for, respectively, triggers and actions known

by the engines.

Package eu.c3isp.oe.te.restapi.types and eu.c3isp.oe.ae.restapi.types cater for all the model

class definitions. Metadata object containers are defined here for each of the exposed REST

methods.

Package eu.c3isp.oe.te.restapi.triggers contains all trigger implementations available in the

trigger engine. Similarly, eu.c3isp.oe.ae.restapi.actions hosts the build-in action

implementations. Additional triggers and actions may be registered, by means of the dynamic

trigger/action management.

Lastly, eu.c3isp.oe.te.restapi.security and eu.c3isp.oe.ae.restapi.security have the Spring

security initialization.

Figure 43: Trigger Engine (part of the Obligation Engine) source code packages from the Eclipse IDE.

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/obligation-engine/trigger-engine

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 84 of 120

Figure 44: Action Engine (part of the Obligation Engine) source code packages from the Eclipse IDE.

5.9. Data Manipulation Operation Engine

5.9.1. Component description

The Data Manipulation Operation (DMO) Engine is a component in charge of executing the

Data Manipulation Operation as prescribed by the DSA. In fact, besides determining whether

the data can be accessed or not by the requestor, the decision process also determines a set of

operations that must be executed on such data before being released to the requestor.

Following to design review sessions held during Y2, it was observed a similarity in planned

use cases among the DMO Engine, the Obligation Engine (and more specifically, the Action

Engine) and the Enterprise pilot C3ISP Gateway. For this reason, the implementation of these

three components share some parts, to allow for a rational usage and allocation of

development resources.

The DMO Engine is implemented using the Spring framework family. It relies on the latter

for exposing a REST interface, as well as for configuration management and dependency

injection.

5.9.2. Maturation status

The DMO Engine is implemented and available at M24. It is fully integrated with the

Anonymization Toolbox and only a proof-of-concept (not in production) integration is

available for the Homomorphic Encryption Engine.

The DMO Engine uses a library, MapDB12, that provides concurrent Maps, Sets and Queues

backed by disk storage or off-heap-memory. It is a fast and easy to use embedded Java

database engine. MapDB allows for handling dynamic registration of actions and

management/set up of triggers.

12 https://github.com/jankotek/mapd

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 85 of 120

5.9.3. Requirement Analysis at M24

The DMO Engine was not part of components analysed in D8.1, therefore this section will

contain a list of requirements for the component to be fulfilled by the end of the project.

ID Priority Requirement

C3ISP-Com-DMOE-

001

MUST The DMO Engine must be able to call all required

data manipulation operations.

C3ISP-Com-DMOE-

002

MAY DMO Engine must be callable by the ISI API

components.

The requirement analysis may be detailed as follows:

ID MET Description

C3ISP-Com-

DMOE-001

PARTIALLY The integration with the Homomorphic Encryption

solution is not complete and will be achieved by M25, the

integration with Anonymization Toolbox is complete at

this stage.

C3ISP-Com-

DMOE-002

YES The DMO Engine is integrated with the Event Handler

thus it is enabled to invoke DMOs as required.

5.9.4. First release of the component

The first release of the DMO Engine runs as a Java application powered by the Spring

framework. Its implementation relies on two main group of classes. One, the Event Listener,

communicates with the Event Handler, sending and receiving messages towards and from the

other DSA Adapter components. The other group is in charge of the implementation of the

functionalities exposed by the DMO Engine. Its RESTful API methods are implemented by

means of a number of classes, as detailed in the following Table 10.

Table 10: DMO Engine RESTful methods.

Method Name Note Parameter Example

/v1/action A POST request to the URL

with the parameters as for the

example will register a new

DMO operation. The input

JSON contains the endpoint to

call the action, an actionId

identifier and all required

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 86 of 120

parameters for the call. The

return element of the call is a

HTTP status code, with 200

meaning a successful

registration.

name>,

"parameterPassingMode" :

<GET|PATH|QUERY>,

 "DataType" : "string"

 }],

"actionId" : <value>,

"endPoint" : <value>,

"httpMethod" : <HTTP VERB>

 }

/v1/action A GET request to this

endpoint, will return a list of

actions registered in the

Action Engine.

No parameters are needed.

/v1/execute A POST request to this

endpoint (once user is

authenticated), if authorised,

will execute an action

(specified with actionId) with

the specified parameters using

the metadata format as

specified in the next cell.

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

name>,

 "parameterValue" : <value>,

 "DataType" : "string"

 }],

"actionId" : <value>,

 }
/v1/action/anonymize-dpo A POST request to this

endpoint will trigger the

anonymization of a DPO from

the ISI.

HTTP Form with:

- message:

{

 "Attribute" : [{

 "parameterId" : <parameter

name>,

 "parameterValue" : <value>,

 "DataType" : "string"

 }],

"MechanismName" : <value>,

"PrivacyParameter" : <value>

 }

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 87 of 120

/v1/eventNotification This method allows to receive

asynchronous notifications

from the Event Handler.

HTTP Body:

{

 "additionalProperties" : {

 "Attribute" :

<any desired value>, …},

 "eventType" : <event type

value>,

 "sessionId" : "string"

 }

5.9.4.1. Link to Source Code

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/dmo-engine/dmo-engine (binaries)

5.9.4.2. Source Code Description

The list of the APIs and their description is reported in deliverable D7.3, in Section 5.1.5.

The source code is depicted in Figure 45.

More in details:

The main packages eu.c3isp.isi.dmoe contains the ApplicationDeployer classes, in charge of

enabling the Spring framework activation for the web application.

The persistency management (based on MapDB, as mentioned) is achieved by means of

classes in package eu.c3isp.isi.dmoe.persistency.

The packages eu.c3isp.isi.dmoe.impl contains the definition and implementation of the Event

Listener class, required for interacting with the Event Handler, together with all management

classes for the data management operations of the engine.

Package eu.c3isp.isi.dmoe.restapi.types caters for all the model class definitions. Metadata

object containers are defined here for each of the exposed REST methods.

Package eu.c3isp.isi.dmoe.actions contains all DMO adapters implementations needed to call

the actual DMO implementations.

Lastly, eu.c3isp.isi.dmoe.security has the Spring security initialization.

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/dmo-engine/dmo-engine

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 88 of 120

Figure 45: DMO Engine source code packages from the Eclipse IDE.

5.10. Bundle Manager

5.10.1. Component description

The Bundle Manager (BM) is a module of the DSA Adapter. It aims at posting, deleting and

retrieving packets of data called DPOs (Data Protected Object). Such packets consist of four

files put in a ZIP file which is encrypted with AES and then sent to DPOS (Data Protected

Object Storage). These packets can later be retrieved from the DPOS component or be

deleted.

Figure 46: The structure of a bundle data

5.10.2. Maturation status

The main functions of the BM component have been implemented, almost finished and

completed. The BM component consists of encrypting and packaging CTI data, metadata and

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 89 of 120

DSA data in only one packet before invoking DPO API to store them in DPOS platform. The

encryption step is performed by the Key & Encryption Manager component (part of the CSS

subsystem, see D7.3).

The complete version for BM component is indirectly interacted with IAI platform. Indirectly

word in this case means that when BM receives a request for Kreyvium encryption, BM will

invoke a request to K&E Manager to encrypt it. At this moment, the transciphering step might

be executed in order to get ready and generate in advance the data encrypted to FHE form.

These data will be stored in a specific folder for analysing with FHE later.

During CTI Bundle creation, the current version of the BM does not compute the hash with a

cryptographic hash function which guarantees the data integrity (i.e. data have not been

modified by unauthorized parties). It currently uses a hash function provided by Java which

does not offer this functionality. SHA-2 cryptographic hash function should be employed in

the next version.

5.10.3. First release of the component

The BM is integrated in one API accessible via https://isic3isp.iit.cnr.it:8443/bundle-manager

It permits five operations:

- Create a CTI Bundle for data storage (simple encryption)

Function: /v1/bundle/create/{requestId}

This operation allows creating a DPOs from a metadata file, a CTI data file and

DSA file. According to requirement,

- DSA file is encrypted by a couple of AES keys which are identified by the unique

DSA identifier,

- CTI file is encrypted by AES keys which can be used for IAI platform.

- Metadata file is in clear form for searching CTI purpose.

- Retrieve full CTI bundle

Function: /v1/bundle/read/{dposId}/{payloadFormat}

This operation consists of retrieving a complete bundle object (Metadata, CTI file,

DSA file and hash file) which is identified by dposId. In function of the

specification field payloadFormat defined in the path of request, this operation can

give a bundle data in encrypted form (EncryptedFormat) or in clear form

(ClearFormat).

- Delete a CTI bundle

Function: /v1/bundle/delete/{dposId}

This operation consists of deleting the bundle data. The function “undo” for

deleting is not provided. So, this action is irreversible.

- Create a CTI Bundle for data manipulation (multiple encryption)

Function: /v1/dmo/create/{requestId}/transciphering

This operation consists of encrypting a specific data with Kreyvium algorithm (a

symmetric encryption), which is contained in the CTI file before making trans-

ciphering to Homomorphic encryption form. That is an important step before

performing this data with FHE technology. In this version, the specific data is IP in

dest field in CTI file.

- Receive an event from Event Handler for processing CTI Bundle

Function: /v1/notifyEvent

https://isic3isp.iit.cnr.it:8443/bundle-manager

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 90 of 120

This function consists of receiving all the requests from Event Handler for

manipulating with CTI data.

Generic workflows are given and described in the deliverable D7.3, Section 4.1.6. The bundle

manager is exposed at the following url:

https://isic3isp.iit.cnr.it/bundle-manager/swagger-ui.html

Figure 47: Bundle Manager APIs

5.10.3.1. Link to Source Code

The code source is available at:

https://devC3ISP.iit.cnr.it:8443/c3isp-wp8/isi/bundle-manager/bundle-manager-api.git.

5.10.3.2. Source Code Description

The list of the APIs and the description for these API is reported in deliverable D7.3, in

Section 5.1.6. The Figure 48 show the structure of Bundle Manager code source.

The main package fr.cea.bundle contains the ApplicationDeployer class, in charge of enabling

the Spring framework activation for the web application.

The package fr.cea.bundle.client.restapi contains the definition and implementation from

client side for invoking the Bundle Manager APIs, this class is only used when receiving

events from Event Handler component.

The package fr.cea.bundle.components caters for all the client interactions with others

components via their APIs

The package fr.cea.bundle.config is used for API access configuration.

The package fr.cea.bundle.helper contains all the general methods and constants which are

used in this Bundle Manager project

The package fr.cea.bundle.models contains all the model class definitions. Metadata object

containers are defined here for each of the exposed REST methods.

The package fr.cea.bundle.restapi contains all the definition of API methods

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/bundle-manager/bundle-manager-api.git

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 91 of 120

The package fr.cea.bundle.kecore.api contains the interaction with K&E Manager API and

same usage purpose for the package fr.cea.bundle.kent.dpos.client for DPOS component

Lastly, fr.cea.bundle.security and fr.cea.bundle.sevices has the Spring security initialization.

Figure 48: Bundle Manager code source structure

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 92 of 120

6. Collaborative Data Analytics: The Information Analytics

Infrastructure (IAI)
The Information Analytics Infrastructure (IAI) allows Prosumers to request the execution of

analytics services on the data protected and shared by the ISI. It supports both so called

C3ISP-aware analytics services, jobs that can exploit the full capabilities of the C3ISP

Framework, and so-called legacy analytics services (i.e. already existent analytics), that can

run on the shared data but have limitations.

6.1. Specific Data Analytics Examples

This section describes the analytics that have been developed at M24. Further analytics will

be developed for the second release of the prototype

6.1.1. Component description

6.1.1.1. Monitoring of connections to malicious hosts.

This analytic works on connection request logs and identifies whether the destination

addresses belong to malicious hosts. Connection logs are directly taken from a router that use

the Netflow V9 protocol and pushes the information to a client software that collects the logs.

This service is run with a combination of a DMO, more specifically, the homomorphic

encryption one, which processes the data directly in the crypto-text keeping private the data

analysed. See Section 8.2 for the complete status of this component.

6.1.1.2. Monitoring of Domain Generation Algorithm DNS-request.

This analytic works on DNS request logs and identifies whether domain names have been

resolved within domains that refer to a Domain Generating Algorithm (DGA). These are used

by malware to register new domains on the fly to avoid that malware depends on a fixed

domain or an IP address that could be quickly blocked. Thus, the malware switches to a new

domain at regular intervals and thus prevents that a new version of the malware is released.

6.1.1.3. Detection of brute force/DDoS attacks.

This analytic aims at detecting brute-force or DDoS attacks on the log of services, e.g.,

SSH. So, IPs found as malicious can be used by prosumers to block connections by setting

up firewall policies rules.

6.1.1.4. Spam Email analysis.

This analytic takes as input a set of unsolicited email files in eml format, hence it extracts

from these email files a set of numerical features, which are representative of the email

structure, hence the emails are at first separated in campaigns, grouping the ones showing a

similar structure, then they are separated in different classes on the base of the spammer

goal.

6.1.2. Maturation status

6.1.2.1. Monitoring of connections to malicious hosts.

This analytic aims at detecting a given IP which is encrypted in FHE format belongs to the black list
of IPs. the details are described in Section 8.2.2 of the same deliverable.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 93 of 120

6.1.2.2. Monitoring of Domain Generation Algorithm DNS-request.

This analytic aims at detecting DNS requests used by malware to register new domains on the

fly, e.g., www.fgd2iwya7vinfutj5wq5we.com. Compared to the first year of the project, this

analytic has reached a good level of maturation that allows the analytic to properly process

DNS-request logs belonging to the BIND13 open source software, which resolves DNS

queries for users. In particular, the current maturation status for this analytic consists of:

- Managing request logs coming from BIND software that are inputted as CEF format;

- Using an internal script that processes each domain name resolved, which appears in

the log, and identified if the resolved name is a DGA;

- Producing as out a list of DGA names found in the logs structured as CEF format

keeping the original information of the log, for instance the timestamp when the

requested has been done to the DNS.

6.1.2.3. Spam Email Analysis

The analytics aims at detecting, classifying and clustering spam emails according to the goal

of the spammer and exploiting structural similarity. The maturation performed till M24

consists in the introduction of a mechanism based on deep learning for separating genuine

emails from malicious one, allowing an accurate filtering HAM vs SPAM. Moreover, the

analytics has been made compatible with data in STIX format, which is the common format

currently used in C3ISP.

6.1.3. Requirement Analysis at M24

6.1.3.1. Monitoring of Domain Generation Algorithm DNS-request.

This analytic has met the requirement expressed in the D2.1 as ISP-UC-01 and ISP-US-01

and in particular, the need of the Monitoring of Domain Generation Algorithm DNS-request

analytic for this pilot was expressed in the interview done to ISPs always described in D2.1.

6.1.3.2. Detection of brute force/DDoS attacks.

This analytic has met the requirement expressed in the D2.1 as ISP-UC-01 and ISP-US-01

and in particular, the need of the Detection of brute force/DDoS attacks analytic for this pilot

was expressed in the interview done to ISPs always described in D2.1.

6.1.3.3. Spam Email Analysis

The analytics has met the requirements of D3.1 for CERT-US-05, showing effectiveness and

accuracy in classifying spam emails according to the threat that they bring.

6.1.4. First release of the component

6.1.4.1. Monitoring of Domain Generation Algorithm DNS-request.

At m24 this analytic has been released and it is up and running within the IAI component of

the C3ISP Framework. The current release of the component consists of two API, which are:

API Description

/detectDGA It takes domain-name logs and check if they are DGA using a third-

13https://www.isc.org/downloads/bind/

http://www.fgd2iwya7vinfutj5wq5we.com/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 94 of 120

party algorithm.

/matchDGA It takes domain-name logs and check if they are DGA using a public

source of known DGAs.

The analytic is exposed at the following url:

https://iaic3isp.iit.cnr.it/monitoring-dga/swagger-ui.html#/dga45service45implementation

In Figure 49, it is illustrated the swagger representation on this analytic showing the two APIs

Figure 49: Swagger representation for Monitoring of Domain Generation Algorithm DNS-request

6.1.4.1.1. Link to Source Code
https://devC3ISP.iit.cnr.it:8443/c3isp-wp2/monitoring-dga.git

6.1.4.1.2. Source Code Description
The Monitoring of Domain Generation Algorithm DNS-request analytic has been developed

as API as part of an Eclipse project. In Figure 50, it is shown the analytic hierarchy of the

analytic shown as an Eclipse project, the source code of the most important functionalities of

the API is available in the DGAServiceImplementation.java object.

Figure 50: Monitoring of Domain Generation Algorithm DNS-request project and main objects

Source Code of/detectDGA API.

https://iaic3isp.iit.cnr.it/monitoring-dga/swagger-ui.html#/dga45service45implementation

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 95 of 120

This API is exposed as a POST method that takes as input a JSON file containing the URI to

the CEF file stored in the VDL. In particular, the CEF file contains DNS request log and an

internal algorithm checks if each request was a DGA. For all DGAs found, the algorithm

creates a CEF file.

The following code represents the signature of the API:

@RequestMapping(value = "/detectDGA",

consumes = { "application/json" },

produces = { "application/json" },

method = RequestMethod.POST)

publicAnalyticResultdetectDGA(@RequestBody Path pathVDLParam)

When invoked the API requires that the caller specifies where is located the DNS request log

file to be processed temporarily stored in the virtual data lake (VDL). The input file

containing the DNS requests is already translated into the CEF format and the analytic is able

to process. So, for each request written in CEF, the API extrapolates the corresponded domain

name. An example of request log written in CEF is in Table 11:

Table 11 - BIND DNS requests written in CEF

CEF messages

CEF:0|DNS_Vendor|DNS_CED|1.0|100|DNS query|5|src=192.168.1.2 spt=37239 msg=www.google.com IN A -EDC
(192.168.1.9) end=1505484703431 dtz=Europe/Berlin

CEF:0|DNS_Vendor|DNS_CED|1.0|100|DNS query|5|src=192.168.1.3 spt=27203 msg=anevmtpra.info IN A +
(192.168.1.9)end=1505484704474 dtz=Europe/Berlin

The corresponding source text generated by BIND is:

15-Sep-2017 16:11:43.431 client 192.168.1.2#37239 (www.google.com):

query: www.google.com IN A -EDC (192.168.1.9)

15-Sep-2017 16:11:44.474 client 192.168.1.3#57203 (anevmtprova.info):

query: anevmtpra.infoIN A + (192.168.1.9)

To parse the CEF messages, this API uses the following open sources libraries:

importcom.github.jcustenborder.cef.CEFParserFactory;
importcom.github.jcustenborder.cef.CEFParser;
importcom.github.jcustenborder.cef.Message;

The /detectDGA API parses each message with the aim of extrapolating from the msg field the

domain name resolved by the client that made the request. After, getting out the domain

name, for instance anevmtpra.info, the analytic invokes a third-party script written in python

to discover for DGA based on ngram analysis with trained Markov chain mode. This python

script is released as open source and some modifications to the source code were required to

allow the script to work with a list of domain name available and to generate a corresponding

CEF file with all DGAs found. At the end, the CEF file is taken and a new DPO is created in

the DPOS.

Source Code of/matchDGA API.

This API behaves similarly to the /detectDGA. In fact, it takes as input a CEF file containing

all domain name requested that have been generated using the BIND DNS software. Even this

API is exposed as POST and takes as input a JSON object that specifies where the CEF file is

located in the virtual datalake. The signature method of this analytic is represented in the next

box:

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 96 of 120

@RequestMapping(value = "/matchDGA",

consumes = { "application/json" },

produces = { "application/json" },

method = RequestMethod.POST)

publicAnalyticResultmatchDGA(@RequestBody Path pathVDLParam)

Once the /matchDGA is invoked, it receives as input a CEF file as that one depicted in Table

11. Then each line is parsed and the domain name is extrapolated in the same manner as

explained above. However, this time the domain name is used to be matched with a table

stored with a MySQL database. In particular, the table stores all recent DGA public available

through the public source at the url: https://osint.bambenekconsulting.com/feeds/dga-feed.txt.

Figure 51: Eclipse project for the script to retrieve public DGAs

To this purpose, an additional script was written to daily download the list and populate the

MySQL table. So, when the matchDGA queries the table, if the matched domain-name is

found in the table then the domain-name is set as DGA. So, at the end of the match all DGAs

found in the input files are stored in a new CTI with the CEF format and sent to the ISI as a

new DPO.

6.1.4.2. Detection of brute force/DDoS attacks.

At m24 this analytic has not been added yet. As it will be described in D2.3 available for m30,

the Detection of brute force/DDoS attacks will analyse service logs to detect brute force or

DDoS attacks.

6.1.4.3. Spam E-mail Analysis

The analytic for Spam e-mail analysis has been the first analytic made available through the

IAI API. At M24 the Spam E-mail Analysis is made by two API call available through the

IAI APIs fully implemented and integrated with the CERT pilot. A third analytic has been

added and is currently under development. The three analytics are reported in Figure 52.

Figure 52: IAI API calls of analytics for SPAM e-mail analysis

 The spamEmailClassify takes as input a set of eml files and assigns to them a class

based on the spammer goal. The analytics extract first a set of structural features

converted in a vector of numerical features to be used as input for the classifier. The

full list of features is reported in Figure 53. The classifier will assign to each vector

one of the following classes: (i) Advertisement: E-mail used for unsolicited

advertisement of products; (ii) Phishing: E-mail used for attempting to steal user

credentials on some services; (iii) Malware: E-mail used as a vector for a malicious

software to infect the receiving matching; (iv) Portal: E-mail generally showing a

https://osint.bambenekconsulting.com/feeds/dga-feed.txt

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 97 of 120

single link that redirects the user on a portal of different categories of products for

sale. It is similar to advertisement but makes it harder to assign responsibilities; (v)

Confidential Trick: E-mails that attempt to trick the user into paying an amount of

money in exchange of a fake service. This function has been fully implemented

Figure 53: Features for e-mail analysis

 The spamEmailClusterer exploits the CCTree [18] algorithm to separate spam e-mails

in campaigns, exploiting structural similarity. Campaigns are a set of spam e-mails

with a similar structure, generally generated by the same spammer. The input is a set

of eml files from which are extracted the same features exploited by the

spamEmailClassify analytic. This analytic at M24 is fully implemented and integrated

in the CERT pilot.

 The spamEmailDetect analytic takes as input a set of e-mails and separates them into

genuine (ham) e-mails and unsolicited ones (spam). The analytic at month 24 has been

developed but has still to be integrated.

Source Code for Spam Analysis

The code of spam analysis is part of the IAI API project shown in Figure 54.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 98 of 120

Figure 54: IAI API code structure

The functions are implemented as Java classes, invoked directly by the IAI API java code

when triggered via REST. The MailClassifier.java class contains the function for

classification, including the primitives to train the classifiers or add new knowledge. It is also

possible to select the classifier as a parameter. By default, the used classifier is the

CCTreeClassifier [19]. The MailClusterer.java includes instead the primitives to perform the

clustering exploiting the CCTree algorithm, and the primitives to compute the quality of

generated clusters in terms of purity. The ClassifierParameter.java includes the functionalities

to extract features from eml and generate the vector of parameter used as input for classifiers.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 99 of 120

7. Visualization of Security Analytics

7.1. Component description

The SATURN Visual Analytics tool will be used to provide visualisation of security insights

extracted from a multitude of security data (CTI) that have been shared within C3ISP

platform as well as from results produced by C3ISP-own collaborative analytics functions,

such as list of identified DGA (Domain Generation Algorithm) domain names or malicious

source hosts. In-depth and interactive analysis of the data will be performed by means of ten

different types of inter-linked visual gadgets, e.g. bubble chart, link-analysis, trends,

clustering, geographical.

7.2. Maturation status

SATURN already has TRL 9 status and is regarded as a Legacy Analytics Engine within the

C3ISP IAI subsystem. No further development of new functions was planned to mature the

product further. However, maturation towards its integration into the C3ISP architecture was

needed to enhance the analytics capability of C3ISP-powered cyber sharing platform on the

one hand, and to test and validate the flexibility of the C3ISP reference architecture in

accommodating existent and legacy technologies on the other hand. The specific tasks that

have been completed by M24 towards such maturation are summarised as follows:

- SATURN software needs to be deployed within the protected BT network

environment due to its licensing agreement. In contrast to other C3ISP components,

the tool is therefore not accessible from the public Internet. To overcome this issue a

VPN solution was implemented using the OpenVPN software for establishing a secure

tunnel between the respective BT network gateway and potential SATURN user’s

machine. As described in D7.3 a semi-permanent VPN tunnel has also been set up

between the BT gateway and the IAI machine to allow HTTP redirection service

which would remove the requirement of each client machine for setting up their own

VPN tunnel. This also allows SATURN to securely access the data stored within the

C3ISP sub system component (i.e. Virtual Data Lake).

- SATURN will read the data from a Virtual Data Lake (VDL) instance prepared by the

C3ISP IAI component. As described in D7.3 a VDL implementation using MySQL

database system has been completed. We have successfully verified that a VDL-URI

provided by the corresponding C3ISP component which contains the unique MySQL

database connection details and access credentials, can be used to create a new data

source within SATURN. The configuration has been done manually using SATURN’s

user interface to connect to the database and associated table as well as to map the

table columns to respective data attributes for further analysis in SATURN.

- In order to strive for more seamless integration of SATURN we looked at options to

automate its data source configuration and mapping without the need for user

interaction. We have verified that this can be achieved under certain circumstances by

applying our internal knowledge of SATURN. Due to its confidential nature, the

details cannot be disclosed here.

- Another aspect of integration is the identity management comprising user

authentication and authorization. Being able to use a common user identity and role

across different C3ISP components is beneficial in order to remove unnecessary

complexity for controlling access to various resources such as CTI data or API

function calls. The C3ISP testbed is currently adopting OpenLDAP as its Identity

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 100 of 120

Manager. We have configured SATURN to use C3ISP’s OpenLDAP server to manage

its user base instead of using SATURN’s own authentication module. Each SATURN

user needs to be assigned a role either as User or Administrator. This should be

reflected in the group membership settings on the OpenLDAP server. We have created

the required LDAP directory structure for some test users and stakeholder groups

related to the C3ISP Enterprise Pilot. In particular, we grouped the users into two

company groups (more groups can be added later as needed). Additionally, each user

is assigned a stakeholder group, i.e. SecurityAnalyst, Security Operation Executive,

orData Policy Officer. All these users will be recognized by SATURN to have the role

User. Another user is assigned a stakeholder group Development Manager which will

be recognized by SATURN as its Administrator user. We have successfully tested the

SATURN’s LDAP configuration within the context of Enterprise Pilot. LDAP

directory structure for the other C3ISP pilots (i.e. ISP, CERT, and SME Pilots) can

later be created as necessary.

7.3. Requirement Analysis at M24

Table 12 – Visualization of Security Analytics Requirements Status

ID MET Description

C3ISP-Com-

Usa-001

YES The tool offers a rich and intuitive graphical user

interface to allow users to carry out different tasks,

starting from configuring data sources, event attributes

mapping, exploring and filtering the datasets, up to

visualising the data using a variety of visual gadgets.

C3ISP-Com-

Usa-002

YES The tool supports two ways for data ingestion. Data can

be read from databases, i.e. RDBMS (Oracle,

PostgreSQL, MySQL, SQL server), columnar database

(Vertica), and Hadoop cluster (via Cloudera Impala), or

uploaded from files in Excel and CSV formats.

C3ISP-Com-

Usa-003

YES The tool provides an “Explore” component which is

capable of handling billions of events at a time and may

be used to construct more specific, complex database

queries for further analysis. In total there are 10 different

graph views, such as bar or line charts, mini graph view,

parallel coordinates, etc., which can be used to help users

visually filter and explore the data.

C3ISP-Com-

Usa-004

YES The tool provides an “Analyse” component which allows

for fine-grained visualization and analysis of the data read

into the system. It consists of one or more ‘Gadget’

windows which can themselves be configured to show

one of several different visualizations such as bubble

chart, trends, network, radial, pie chart, geolocation map,

etc. It also supports unsupervised clustering algorithm

and visualization to elicit patterns of interest in the data.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 101 of 120

7.4. First release of the component

SATURN has TRL9 status and is currently deployed within protected BT network

environment. The implemented functionalities have been described in D8.1 and all the

requirements have already been met. In the next phase, further efforts will focus on

integrating the tool with other C3ISP components as needed.

7.4.1.1. Link to Source Code

Since SATURN is not an open-source software, its source codes and binaries cannot be made

available to public.

7.4.1.2. Source Code Description

Since SATURN is not an open-source software, its source codes and binaries cannot be made

available to public.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 102 of 120

8. Anonymization and Homomorphic Encryption Algorithms
Privacy-preserving analytics within C3ISP are enabled by anonymization of sensitive data,

provided by SAP, and data encryption that allows to perform operations on the encrypted data

in the form of homomorphic encryption, provided by CEA.

Anonymization alters the data in a way that reduces the risk to identify any individual

contained in the dataset by removing, masking or randomizing personally identifiable

information within the data and enables an analyst to work on the anonymized data in the

clear. Homomorphic encryption, on the other hand, conceals the original data from the analyst

but enables computation on the ciphertext (the product of the encryption) such that the

computation product is another ciphertext containing the desired result. In the context of

C3ISP this enables participants to share their own data which was previously not possible due

to privacy concerns (regarding information in the non-anonymized data) and to outsource

computation to an untrusted server.

8.1. Anonymization Algorithms

8.1.1. Component description

The Anonymization Toolbox component is a research prototype developed by SAP. The

provided anonymization methods include the exclusion of personally identifiable information

(anonymization by suppression, e.g., removal of unique ids and names), the removal or

masking of parts of the data (anonymization by generalization, e.g., randomizing the subnet of

an IP address) and incorporating fine-tuned noise (anonymization by perturbation, e.g., adding

noise to counts or locations).

The latter method refers to a new area of research for a privacy definition called Differential

Privacy[4],[5] which protects individuals in the data but still enables statistical information

about a population (group of individuals) to be obtained. Roughly speaking, random noise is

sampled from a distribution (e.g., Laplace) parametrized in such a way as to add as little noise

as needed to hide any single individual value for a given analytics function and yet have

almost no noise when looking at aggregates of individuals (e.g., the mean of noisy values

contains almost no noise, i.e., has low variance compared to noisy individual values).

How to define mechanisms that add just enough noise for a given analytical function and yet

maintain utility, i.e., usefulness of the result, is an active and on-going area of research. We

analysed the possibility to reduce the needed noise in the context of outlier detection and

published a paper at DBSEC[6]:Individuals are separated in two groups, non-attackers (which

we seek to protect) and attackers (which we seek to find), whereas the latter are presumed to

consume much more resources than the first – as large resource consumption might indicate a

malfunction. In the context of C3ISP this could mean a DDoS attack (many more requests

than normal) or SPAM attack (much more e-mails/bytes sent than usual). We aim to further

investigate how to carefully select the noise for meaningful analysis in the context of cyber

threat information sharing.

8.1.2. Maturation status

The existing anonymization techniques (removal/suppression, generalization, perturbation)

were extended and tailored especially for use within C3ISP. For one, we simplified the

intricate parameter selection for the differentially private noise distribution to enable non-

expert users to select anonymization methods with pre-defined parameters. Thus, the DSA

Editor can display simple, pre-configured anonymization suggestions for the user. For

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 103 of 120

example, the method to anonymize via addition of Laplace distributed noise (Laplace

mechanism [5]) was simplified to protect counts for mean for three predefined levels of

privacy as LOW, MEDIUM, HIGH(previously it required the selection of a privacy parameter

and sensitivity parameter, i.e., the largest absolute difference the inclusion/exclusion of any

individual can have on the function evaluation).

Furthermore, a distinction which part of a delimited string is to be anonymized was added,

i.e., if the removal should begin from the leftmost or rightmost part of a string or if the lower

or upper part of an IP address should be anonymized. Also, IPv4 address pseudonymization

was added. Instead of removing or masking IPv4 addresses (upper or lower) bits are replaced

by random bits to maintain the structure of IPv4 addresses for further processing or analytics

that may parse logs via regular expressions.

The exponential mechanism [8] is investigated as potential maturation. Instead of perturbing

individual values (or the function result computed with these values) the exponential

mechanism defines a selection probability for all possible values (e.g., all 32-bit integers) for

a given evaluation function (e.g., median) with regards to a given dataset (e.g., dataset

{3,5,5,1023}). The exponential mechanism outputs a value that is exponentially more likely

to be close to the actual function result (e.g., median here is 5) than all other possible values.

It fulfils the definition of Differential Privacy and therefore provides a strong privacy

guarantee and can be applied to different functions. (However, as a non-zero probability for

all possible values must be computed with regards to a potentially large dataset it can be

computationally inefficient in certain cases.) The median is an important statistical measure

that unlike the mean is robust (outliers do not easily skew the result) and is an example for a

representative element from a dataset. It can be used to find, e.g., the median number of

connections, or bytes sent/receives, etc., in a privacy-preserving fashion and can be the basis

for further analysis. E.g., by first finding the (privacy-preserving) median for normal users

and then scaling/reducing the differentially private noise to protect only normal users and not

outliers (presumed attackers) as suggested in [6] [6].

The Toolbox was extended to run as-a-Service, i.e., instead of configuring required data

access parameters/credentials (MySQL database URL, username, password) in a file they are

now submitted to the Toolbox as additional parameters per request and database connections

are established when needed and not as a connection pool.

8.1.3. Requirement Analysis at M24

ID MET Description

C3ISP-Com-

AA-001

PARTIALLY Parameters for simplified usage of the component were

defined and a list of currently supported methods can be

found in Section 8.1.4.

Improvements of existing methods or potential extensions

are being investigated.

C3ISP-Com-

AA-002

YES The input data type (the component supports “text”, i.e.,

strings and numbers) is implicitly defined via the method

(e.g., anonymiseDelimitedStringsByRemovalexpects, as

the name implies, a string). The input for

anonymiseByRemoval is treated as a string.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 104 of 120

C3ISP-Com-

AA-003

YES The current version has definitions for anonymization

methods and parameters based on analytical treatment as

required and a list of currently supported methods can be

found in Section 7.1.4.

C3ISP-Com-

AA-004

YES An interface for privacy-preserving operations is

provided via XML requests and a first version of a REST

API.

8.1.4. First release of the component

The Toolbox runs as a Web Service on an Apache Tomcat server, listens on port 8080 and

expects XML as input format (as described in more detail in Deliverable D8.1). The data is

expected to be provided as a MySQL database by the BufferManager component.

To facilitate the communication between C3ISP components (i.e., the DMO engine) and the

Toolbox and to conform to the REST API design within the C3ISP framework the following

API was defined and a translation between these API parameters (currently JSON) and the

ones expected by the Toolbox (XML) will be performed.

Method Name Note Parameter Example

/v1/anonymiseByRemoval The entire column is removed

(anonymization by

suppression), e.g., for

personal identifiers such as ID

numbers, full name, etc.

{

"column": "string"

}

/v1/anonymiseCountsWith

NoiseForMean/
Adds Laplace distributed

noise with sensitivity 1 to

guarantee Differential

Privacy, where sensitivity is

the maximum impact that the

inclusion/exclusion of an

individual can have on a

function evaluation.

{

 "column": "string",

 "dataAccess": {

 "dbpassword": "string",

 "dburl": "string",

 "dbuser": "string"

 },

 "protectionLevel": "LOW"

}

/v1/anonymiseDelimitedStr

ingsByRemoval/
Removes substrings up to a

delimiter (e.g. '.' for IPv4

addresses, ':' for MAC/IPv6,

'@' for e-mail); parameter

'area' defines if removal

affects 'lower' parts (removal

begins from the right) or

'upper' parts (begins from

left).

{

 "area": "LOWER",

 "column": "string",

 "dataAccess": {

 "dbpassword": "string",

 "dburl": "string",

 "dbuser": "string"

 },

 "delimiter": "IPV4",

 "protectionLevel": "LOW"

}

/v1/anonymiseIpsByRando

mization/
Randomizes upper or lower

bits (see parameter 'area') of

IPv4 addresses (number bits,

i.e. netmask, depends on

protection level).

{

 "area": "LOWER",

 "column": "string",

 "dataAccess": {

 "dbpassword": "string",

 "dburl": "string",

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 105 of 120

 "dbuser": "string"

 },

 "protectionLevel": "LOW"

}

/v1/anonymiseLocations/ Provides Geo-

Indistinguishability [7] for

locations x,y (informally, it is

more likely that closer points

remain similar, far away

points remain distant; more

formally,

distributionDistance(M(x),

M(y)) ≤ epsilon × r where

euclidDistance(x,y) ≤ r, M is

the Geo-Ind. mechanism, and

epsilon × r defined via

protectionLevel parameter).

{

 "column": "string",

 "dataAccess": {

 "dbpassword": "string",

 "dburl": "string",

 "dbuser": "string"

 },

 "protectionLevel": "LOW"

}

/v1/anonymiseMultipleCol

umns/
Define anonymization method

and parameters per column.

The method names are the

API method names likewise

for parameters.

{

 "anonConfigList": [

 {

 "area": "LOWER",

 "column": "string",

 "delimiter": "IPV4",

 "method":

"anonymiseDelimitedStringsB

yRemoval",

 "protectionLevel":

"LOW"

 }

],

 "dataAccess": {

 "dbpassword": "string",

 "dburl": "string",

 "dbuser": "string"

 }

}

Each function anonymizes a single column (or “field” as it is called for the Common Event

Format (CFE)) and is provided to give an overview of existing methods and a short

description of their usage including required parameters. In case multiple columns need to be

anonymized anonymiseMultipleColumnstakes as input a list of columns to be anonymized and

their respective anonymization methods and parameters. (Thus,

anonymiseMultipleColumnscan provide all anonymization methods and could replace the

methods operating on single columns, however, this reduces the readability of the API.)

The current API is expected to change, either by extension for further techniques/parameters,

by refinement of existing methods or further simplifications needed for the DSA Editor.

8.1.4.1. Link to Source Code

https://devc3isp.iit.cnr.it:8443/c3isp-wp8/isi/dsa-adapter/anonymization-

toolbox/anonymization-toolbox (binaries)

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 106 of 120

8.1.4.2. Source Code Description

A list of the APIs and their description is reported in Section 8.1.4. The source code

components for the Toolbox integration can be seen in Figure 55:

Figure 55: Anonymization Toolbox integration code structure

The implementation for the REST API includes XmlRequestBuilder and XmlResponseParser

as an interface to the Anonymization Toolbox. The supported anonymization methods require

at least a column to be anonymized, a protection level, data access credentials and the name

for the input and output table that will contain the anonymized version of the input table.

An overview of all anonymization methods of the REST API is defined in AnonMethods.java,

including the DMO options, i.e., which parameters are set for a given protection level and

anonymization method. For example, the DMO action

UPPER_NETMASK_LOW_PRIVACY corresponds to anonymiseIpsByRandomizationwith

parameter "area": "LOWER"and “low privacy” corresponds to only randomizing one octet.

Appendix 1 describes the DMO parameters and options.

8.2. Homomorphic Encryption Algorithms

8.2.1. Component description

The Fully Homomorphic Encryption (FHE) Analytics component is developed by CEA. It

aims at performing specific data analytics, all the while preserving data confidentiality. This is

done using hybrid encryption. It makes use of two types of cryptosystems: Brakerski/Fan-

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 107 of 120

Vercauteren (B/FV) homomorphic cryptosystem to perform analytics on encrypted data

(ciphertext) and Kreyvium symmetric cryptosystem to permit prosumer to encrypt and send

ciphertexts more efficiently using transcryption14 mechanism [9].

8.2.2. Maturation status

The FHE Analytics employs in the backend, Cingulata. It is a compiler toolchain and runtime

environment, developed by CEA, for running C++ programs over encrypted data by means of

fully homomorphic encryption techniques.

Cingulata became a Free Open-Source Software (FOSS) in Y2. The tool is available on the

website https://github.com/CEA-LIST/Cingulata.

What follows explain the work done during Y2 to maintain confidentiality and deliver new

functionalities useful to C3ISP project.

Data confidentiality

Confidentiality is one of the major missions in the FHE Analytics component. It aims at

protecting secret information against adversaries. The security level of a cryptosystem

instance is a quantity which enables to estimate the number of binary operations needed to

break the cryptosystem (i.e. decrypt without knowing the secret key) against known attacks.

There exist several families of attacks and currently, there is no best attack on B/FV

cryptosystem [15]. Best attack depends on the parameter sets used to instantiate the

cryptosystem. In addition, there is no consensus on the cost estimation of an attack, there exist

at least 14 different cost models in the literature15 which lead to different conclusions.

Homomorphic cryptosystems such as B/FV [11] rely on difficult mathematical problems on

lattices. In the current version of Cingulata, the implementation of B/FV use, by default,

parameter sets obtained following the recommendations given in the article introducing the

B/FV cryptosystem to get a security level of 128-bit. Optimal parameter selection in lattice-

based cryptography is an open problem [12][17]. A tool, called the lwe-estimator16[17][13]

have been developed to help the community to choose secure parameter set. It is regularly

updated to integrate new results. We employed it to check the security level of the parameter

set used in Cingulata implementation. In March 2018, we identified that an attack called

Primal-uSVP is estimated feasible against the parameter sets used in Cingulata. This result

follows a work presented in Asiacrypt 2017 which gives more precise results to estimate the

cost of Primal-USVP attack[14]. To maintain confidentiality with 128-bit of security, we then

developed a program which makes use of ChooseParam algorithm in [13][13] and on the

more recent version of the lwe-estimator to determine secure parameter sets against a family

of attacks such as Primal-uSVP to solve LWE (Learning with Error [16]) hard mathematical

problem on which the security of B/FV is based. Rather than using by default a fixed

parameter set susceptible not be secure anymore in few months if better attacks are proposed

or more pessimistic cost attack estimation are obtained, we store and update a database

containing estimated-secure parameter sets. From a high-level view, a parameter set depends

on the multiplicative depth of the Boolean circuit that we apply on encrypted data. To

recapitulate, this parameter is the maximal number of multiplications between an input and an

output of the Boolean circuit. We restrict our attention to four popular cost models among the

one used by lattice-based cryptosystem candidates in ongoing NIST Post-Quantum

14 For short, transcryption permits to transform symmetric ciphertexts into homomorphic ciphertexts.
15https://estimate-all-the-lwe-ntru-schemes.github.io
16 LWE stands for Learning with Errors, it is the name of a difficult cryptographic problem with lattices.

https://github.com/CEA-LIST/Cingulata
https://bitbucket.org/malb/lwe-estimator
https://estimate-all-the-lwe-ntru-schemes.github.io/docs/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 108 of 120

Cryptography (PQC) Standardization17 project. Each cost model gives different security

estimates. Considering them, we compute and provide up-to-date secure parameter sets for

multiplicative depth between 4 and 20 which is the suitable range for B/FV cryptosystem

employed to evaluate C3ISP data analytics over ciphertexts.

Data Analytics

The FHE Analytics permits to operate on a fixed-length string (such as IPv4). In addition,

variable-length string (such as words) can be treated. To enable this, a string hash function18is

applied during precomputation. This operation maps variable-size data to fixed-size data

called hashes. These hashes are 32-bit values. Current use-case in C3ISP makes use of set of

IPv4 addresses with homomorphic algorithm (circuit) membership. An IP set is an IP list with

no duplicate It is possible to manage lists with duplicate elements but not desirable. The

circuit multiplicity operates on a list rather than a set. It is much costlier nevertheless it also

allows to count the number of occurrences of an IPv4 in a list. This could also be used to

detect suspicious number of connections. These two circuits can be used in combination with

a transcryption circuit to decrease prosumer charge.

Performance depends mainly on multiplicative depth and on number of IPv4s for circuits. The

multiplicative depths are given in Table 1. The two circuits have been precomputed for

different list size. In addition, each homomorphic algorithm has different prerequisites given

in the Tables 2 and 3.

Table 13 - Circuit multiplicative depth to detect a suspicious IPv4 in a blacklist. The bigger is the slower.

 Set of IPv4 (no duplicates) List of IPv4s (possible

duplicates)

Without transcryption 5 12

With transcryption from

Kreyvium cryptosystem

12 19

8.2.3. Requirement Analysis at M24

ID MET Description

C3ISP-Com-

HE-001
YES We represent IPv4s addresses in Cingulata as one 32-bit

integer rather than four 8-bit integers.

C3ISP-Com-

HE-002
YES We test membership to a list (e.g., a list of malicious IPs)

over ciphertexts with Cingulata. There are two cases to

distinguish in terms of performance. It depends if the list

contains duplicate elements (circuit multiplicity) or not

(circuit membership).

17https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
18http://www.cse.yorku.ca/~oz/hash.html

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
http://www.cse.yorku.ca/~oz/hash.html

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 109 of 120

PARTIALLY

We compute the intersection of two lists with Cingulata

C3ISP-Com-

HE-003
PARTIALLY List size impacts time and memory requirements.

Managing big lists require additional (pre/post)

computations on the client side. We employ transcryption

mechanism to decrease computation and communication

costs on client side.

C3ISP-Com-

HE-004

PARTIALLY We use precomputation to represent IPs addresses as

integers of fixed size in Cingulata. Other data types

would require other precomputations before data

encoding such as hashing for variable-length data.

Encoded values can be integers of size 8, 16, 32 or 64

bits.

8.2.4. First release of the component

The first release of the FHE Analytics component permits to test if an encrypted IPv4 belongs

to a set of encrypted IPv4s contained in a blacklist. It serves to determine if a connection is

malicious or not. To proceed, it takes as input one IP address and compares it

homomorphically to each IP stored in the considered blacklist. Each IP is encrypted bitwise.

Parameter selection stays a difficult problem in lattice-based cryptography [12]. This field is

explored by the research community for different reasons. One of them is that lattice-based

cryptography enables new applications such as homomorphic cryptography. Performance is a

key question from an application perspective. Homomorphic cryptography suffers from low-

performance in terms of time, memory, communications costs compared to a traditional one.

We benchmark the data analytics on the iaic3isp.iit.cnr.it server with current parameter sets.

As mentioned above, parameter sets will be automatically updated using lwe-estimator tool.

Parameter selection is essential as it impacts both security and performance.

To improve efficiency, we employ transcryption (or transciphering) techniques by interacting

with Key and Encryption Manager. The process is described in D7.3, Section 7.2.

Transcryption makes use of two cryptosystems during the homomorphic computation

protocol instead of one. The first one is low-cost (homomorphic-friendly), and the other one is

homomorphic. Transcryption saves time, memory and bandwidth consumption during the

phase before the homomorphic computation. This phase consists in encrypting confidential

data on the prosumer side and send them to the FHE Analytics. Instead of directly encrypting

data with Fan-Vercauteren homomorphic asymmetric cryptosystem, the prosumer encrypts

them using Kreyvium homomorphic-friendly symmetric cryptosystem. Symmetric encryption

offers the advantage to be faster than asymmetric one. In addition, ciphertexts (encrypted

data) sent to the FHE Analytics using Kreyvium cryptosystem, are much smaller. In return,

the FHE Analytics server has additional work. It has to transcrypt the received ciphertext that

is to compute a Fan-Vercauteren ciphertext from a Kreyvium ciphertext to enable

homomorphic computations. The homomorphic circuit to process has multiplicative depth 7.

As said above, Fan-Vercauteren permits, in practice, at most to treat homomorphic circuit of

depth around 20. This means that the homomorphic algorithms, we employ on data have to be

described by a Boolean circuit having a multiplicative depth of 13, when using transcryption

technique.

Table 14 - Circuit membership to detect malicious IPv4s in a set of IPv4s

 Description

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 110 of 120

Circuit Fullname c3isp-membership It determines the presence or absence of an IP in

a set of IPs.

Circuit Inputs (1+ size) variables

of type Integer32

One target IP plus size IP in the blacklist, where

size is the number of considered IP

Circuit Output 1 Bit Answer is true or false

Multiplicative

Depth

5 Impacts performance. Smaller is better.

Independent of set size.

Max number of

IPv4s

600 The circuit depends on the number of considered

IPs. One circuit has been precomputed per each

size less than 600.

Required

parameter

Target IP The operations aims at determining if target IP is

in the considered set.

Required

parameter

Number of IP

considered in the set

Impacts performance. Smaller is better. Needed

to define which circuit to choose in the database.

Optional

parameter

Set name Default value: ipv4.dat

Blacklists are in the directory:
/home/hcatworks/fhe/instance/membership

/blacklists

Prerequisite No duplicate IP in

the list

A circuit without this constraint would be

affected in terms of performance. We should

favour the circuit multiplicity if this constraint

cannot be respected.

Prerequisite The list must contain

the number of IPs

given in parameter

It can contain more IPs but not less.

Table 15 - Circuit multiplicity to detect malicious IPv4s in a list of IPv4s

 Description

Circuit Fullname c3isp-multiplicity It counts the number of occurrence if an IP in a

list of IP and thus permit to decide if an IP

belong to a blacklist or not.

Circuit Inputs (1+ size) Integer32 One target IP plus size IP in the blacklist, where

size is the number of considered IP

Circuit Output 1 Integer8 The number of occurrences of target IP in the list

Required

parameter

Target IP The operations aims at determining how many

times target IP appears in the considered list.

Required

parameter

Number of IP

considered in the set

Impacts performance. Needed to define which

circuit to choose in the database.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 111 of 120

Optional

parameter

List name Default value: ipv4.dat

Blacklists are in the directory:
/home/hcatworks/fhe/instance/multiplici

ty/blacklists

Prerequisite The two lists must

contain the number

of IPs given in

parameter

They can contain more IPs but not less.

Below, the Figures indicate time and memory performance for the two circuits with list of

size 100. The original parameters offer an estimated security level λ of 35 bits. Security must

be at least 100 bits and should be at least 128 bits according to the French Network and

Information Security Agency (ANSSI)19. The first column indicates three input parameters

needed to estimate the security:

1. The multiplicative depth of the circuit (5 for membership and 12 for multiplicity)

2. The chosen cost model. There are different ways to estimate the security, some of

them are optimistic (BKZ sieve), and some other are pessimistic (Q-Core sieve).

There is no consensus in the community for one model. We consider the 4 most used

models in the ongoing Post-Quantum Cryptography NIST conference (BKZ enum,

BKZ sieve, Core Sieve, Q-Core Sieve).

3. The desired security level. We follow ANSSI recommendation to obtain parameters

which offer a security level greater than 128.

The output parameters 𝑛 and 𝑞 permits to define the ciphertext space of polynomials of

degree 𝑛 with coefficients modulo 𝑞. The bigger they are, the bigger is the memory used. We

indicate time performance with and without precomputation. IPv4 is represented with 4

integers between 0 and 255 (8-bit integer). The precomputation consists in representing them

as one 32-bit Integer. The associated circuit contains less AND gates. We remind that the

multiplicative depth and the number of AND gates are the most important parameters to

minimize execution time when using Brakerski/Fan-Vercauteren scheme.

Last column indicates memory usage, more precisely encrypted bit size. An IPv4 corresponds

to 32 encrypted bits. The encrypted yes-no answer of the circuit membership corresponds to

one encrypted bit. The encrypted integer answer of the circuit multiplicity corresponds to an

8-bit integer (it is at most 255).

Figure 56: Updated security λ and performance on circuit membership to test homomorphically if an IPv4

belongs to a set of size 100. Parameters computed using lwe-estimator tool (commit ID=76d05ee)

Figure 57: Updated security λ and performance on circuit multiplicity to test homomorphically how many

times an IPv4 is in a list of size 100. Parameters computed using lwe-estimator tool (commit ID=76d05ee)

19 https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 112 of 120

Time and memory performance are affected by updating security, but these ones are

mandatory to offer compromise security requirements (80 bits for most optimistic). The

circuit multiplicity can be used in the case of duplicated IP, it means that an IP can have at

least two occurrences in the black list. However, this case takes more time and memory for

processing. This is mainly due to multiplicative depth gap between the two circuits.

In the following Figure Figure 58Figure 49, it is illustrated the swagger representation on this

analytic showing the two APIs

Figure 58: FHE Analysis API

8.2.4.1. Link to Source Code

The code source is available at:

https://devC3ISP.iit.cnr.it:8443/c3isp-wp2/conn-malicious-host.git

8.2.4.2. Source Code Description

The list of the APIs and the description of these API is reported in deliverable D7.3, in

Section 5.1.2

Figure 59: FHE Analysis Toolbox integration code structure

The main package fr.cea.fhe contains the ApplicationDeployer class, in charge of enabling the

Spring framework activation for the web application.

An overview of all homomorphic encryption methods and the analysis models are defined in

the package fr.cea.fhe.models.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 113 of 120

The package fr.cea.fhe.restapi contains all the definitions for APIs RestFull service.

Lastly, fr.cea.fhe.security contains the Spring security initialization.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 114 of 120

9. Managed Security Services

9.1. Component description

In the context of the C3ISP project, the Managed Security Services (MSS) component

provided by BT is also known internally as the “Intelligent Protection Service” (IPS). As

currently it is only required for use as an MSS in the SME Pilot, it is also referred to as “SME

MSS”. However, other C3ISP Pilots can make use of other commercial or open source MSS

as per their requirements, including IPS.

IPS enables the protection of systems, applications and data processing on a mix of public and

private cloud environments through a collection of security functions that can be offered as

managed security services.

Figure 60: Overview of the IPS high level architecture

An architectural overview of the BT IPS solution offered to each tenant (SME) can be divided

into three dimensions as depicted in Figure 60:

 Policy enforcement: this is the mechanism used to manage the protection of a

system; in this case, it is an agent installed on a virtual machine or a physical

server.

 BT Cloud Security Service: this is the management mechanism used by the IPS

for defining security policies based on a library of rules that include virtual

patches for a very large number of systems and applications, firewall and protocol

rules, etc., and for updating the configuration and enforcement rules of the agents.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 115 of 120

 Threat intelligence: this is the mechanism for enhancing the data-base of heuristic

rules, attacks or virus signatures, vulnerabilities, etc., via a network that includes a

large number of security and application vendors, as well as contributions from

BT’s security ecosystem.

9.2. Maturation status

BT IPS is part of BT’s Managed Cloud Security Products & Solutions portfolio. IPS is a TRL

9 solution and is commercially sold to BT Managed Cloud Security customers as a value-

added service. The implemented functionalities have been described in D8.1 and all the

requirements have already been met.

9.3. Requirement Analysis at M24

Table 16 – Managed Security Services Requirements Status

ID MET Description

C3ISP-COM-

REQ-MSS-1

YES This requirement is currently fulfilled by an instance of

the IPS deployed on the BT’s Cloud research platform

(https://ipserver.zion.bt.co.uk:4119/).

C3ISP-COM-

REQ-MSS-2

YES This requirement is currently fulfilled by an instance of

the IPS deployed on the BT’s Cloud research platform

(https://ipserver.zion.bt.co.uk:4119/).

C3ISP-COM-

REQ-MSS-3

YES This requirement is currently fulfilled by an instance of

the IPS deployed on the BT’s Cloud research platform

(https://ipserver.zion.bt.co.uk:4119/).

9.4. First release of the component

An instance of the BT IPS has been deployed on the BT’s Cloud research platform

(https://ipserver.zion.bt.co.uk:4119/) and the all the SME partners (3D Repo, CHINO and

GPS) and UNIKENT have been provisioned with tenant accounts on this service. In the next

phase further efforts will focus on integrating the tool with other C3ISP components as

needed.

Using an MSS Agent, VMs or physical servers can be connected to the IPS and enable their

administrators to remotely monitor and manage the protection of their environment. There are

currently two ways of making a VM manageable by IPS:

1. The user can download the agent installer from the IPS, according to the operating

system and machine architecture of their VMs or physical servers.

2. The users can be provided an installation and configuration script compatible with the

operating system and machine architecture of their VMs or physical servers. On

running the script, it automatically contacts the IPS and downloads, registers and

activate the appropriate agent software on the VM or the physical server.

https://ipserver.zion.bt.co.uk:4119/)
https://ipserver.zion.bt.co.uk:4119/)
https://ipserver.zion.bt.co.uk:4119/)
https://ipserver.zion.bt.co.uk:4119/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 116 of 120

9.4.1.1. Link to Source Code

Since BT IPS is not an open-source software, its source codes and binaries cannot be made

available to public.

9.4.1.2. Source Code Description

Since BT IPS is not an open-source software, its source codes and binaries cannot be made

available to public.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 117 of 120

10. Conclusions
This deliverable is the first output of WP8, “C3ISP Data Sharing, Analytics and Crypto

Technology Maturation”, due at M24. The main goal of this deliverable is to document the

first software release of the components of the C3ISP framework, i.e., of the Information

Sharing Infrastructure (ISI) and of the Information Analytics Infrastructure (IAI). These tools

and technologies cover most of the functionalities required in the C3ISP project. This

deliverable report maturation status and implementation details for each component. The

requirement status (defined in D8.1) is updated to reflect the progress status of the

requirement at M24.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 118 of 120

11. References
[1] I. Matteucci, M. Petrocchi, and M. L. Sbodio. CNL4DSA: a Controlled Natural

Languagefor Data Sharing Agreements. In SAC: Privacy on the Web Track. ACM,

2010. 21, 23, 54

[2] A. Grigoris and F. Van Harmelen. Web Ontology Language: OWL. In Handbook on

Ontologies in Information Systems, pages 67–92. Springer, 2003. 18

[3] http://csrc.nist.gov/groups/SNS/rbac/

[4] Cynthia Dwork. 2006. Differential Privacy. In Automata, Languages and

Programming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

[5] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),211–

407.

[6] Böhler, Jonas, Daniel Bernau, and Florian Kerschbaum. "Privacy-preserving outlier

detection for data streams." IFIP Annual Conference on Data and Applications

Security and Privacy. Springer, Cham, 2017.

[7] M.E Andrés, N.E. Bordenabe, K.Chatzikokolakis, and C.Palamidessi. Geo-

indistinguishability: Differential privacy for location-based systems. In Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications security, 2013

[8] F. McSherry, and K.Talwar.Mechanism design via differential privacy.Foundations of

Computer Science, 2007. FOCS'07. 48th Annual IEEE Symposium on. IEEE, 2007

[9] Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: Theory

meetspractice on the map. In: Proceedings of the International Conference on Data

Engineering (ICDE) 2008

[10] Canteaut, Anne, et al. "Stream ciphers: A practical solution for efficient

homomorphic-ciphertext compression." Journal of Cryptology 31.3 (2018): 885-916.

[11] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical Fully. Homomorphic

Encryption." IACR Cryptology ePrint Archive 2012 (2012): 144.

[12] Rachel Player. “Parameter selection in lattice-based cryptography” PhD Thesis

(2017)

[13] Guillaume Bonnoron. “A journey towards practical Fully Homomorphic Encryption”

PhD Thesis (2018)

[14] Albrecht, Martin R., et al. "Revisiting the expected cost of solving uSVP and

applications to LWE." International Conference on the Theory and Application of

Cryptology and Information Security. Springer, Cham, 2017.

[15] Elena Kirshanova. “Complexity of the learning with errors problem and memory-

efficient lattice sieving” PhD Thesis, 2016.

[16] Regev, Oded. "On lattices, learning with errors, random linear codes, and

cryptography." Journal of the ACM (JACM) 56.6 (2009): 34.

[17] Albrecht, Martin R., Rachel Player, and Sam Scott. "On the concrete hardness of

learning with errors." Journal of Mathematical Cryptology 9.3 (2015): 169-203.

http://csrc.nist.gov/groups/SNS/rbac/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 119 of 120

[18] Mina Sheikhalishahi, Andrea Saracino, Mohamed Mejri, Nadia Tawbi, Fabio

Martinelli, “Fast and Effective Clustering of Spam Emails Based on Structural

Similarity”. FPS 2015: 195-211

[19] Mina Sheikhalishahi, Andrea Saracino, Mohamed Mejri, Nadia Tawbi, Fabio

Martinelli, “Digital Waste Sorting: A Goal-Based, Self-Learning Approach to Label

Spam Email Campaigns”. STM 2015: 3-19

[20] Jaehong Park and Ravi Sandhu. "The UCONABC usage control model.". ACM Trans.

Inf. Syst. Secur. 7, 1 (2004), 128-174.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D8.2

Page 120 of 120

Appendix 1. DSA parent ontology for DSA Editor
The upper vocabulary file is inherited by all the C3ISP vocabularies and provides the basic

stricture for the CNL language.

upper_vocabulary.owl

